2,605 research outputs found
Smoothed Analysis of Dynamic Networks
We generalize the technique of smoothed analysis to distributed algorithms in
dynamic network models. Whereas standard smoothed analysis studies the impact
of small random perturbations of input values on algorithm performance metrics,
dynamic graph smoothed analysis studies the impact of random perturbations of
the underlying changing network graph topologies. Similar to the original
application of smoothed analysis, our goal is to study whether known strong
lower bounds in dynamic network models are robust or fragile: do they withstand
small (random) perturbations, or do such deviations push the graphs far enough
from a precise pathological instance to enable much better performance? Fragile
lower bounds are likely not relevant for real-world deployment, while robust
lower bounds represent a true difficulty caused by dynamic behavior. We apply
this technique to three standard dynamic network problems with known strong
worst-case lower bounds: random walks, flooding, and aggregation. We prove that
these bounds provide a spectrum of robustness when subjected to
smoothing---some are extremely fragile (random walks), some are moderately
fragile / robust (flooding), and some are extremely robust (aggregation).Comment: 20 page
Twice-Ramanujan Sparsifiers
We prove that every graph has a spectral sparsifier with a number of edges
linear in its number of vertices. As linear-sized spectral sparsifiers of
complete graphs are expanders, our sparsifiers of arbitrary graphs can be
viewed as generalizations of expander graphs.
In particular, we prove that for every and every undirected, weighted
graph on vertices, there exists a weighted graph
with at most \ceil{d(n-1)} edges such that for every , where and
are the Laplacian matrices of and , respectively. Thus,
approximates spectrally at least as well as a Ramanujan expander with
edges approximates the complete graph. We give an elementary
deterministic polynomial time algorithm for constructing
- β¦