19 research outputs found

    Dynamical Friction in Gravitational Atoms

    Get PDF
    Due to superradiant instabilities, clouds of ultralight bosons can spontaneously grow around rotating black holes, creating so-called "gravitational atoms". In this work, we study their dynamical effects on binary systems. We first focus on open orbits, showing that the presence of a cloud can increase the cross section for the dynamical capture of a compact object by more than an order of magnitude. We then consider closed orbits and demonstrate that the backreaction of the cloud's ionization on the orbital motion should be identified as dynamical friction. Finally, we study for the first time eccentric and inclined orbits. We find that, while ionization quickly circularizes the binary, it barely affects the inclination angle. These results enable a more realistic description of the dynamics of gravitational atoms in binaries and pave the way for dedicated searches with future gravitational wave detectors.Comment: 36 pages, 13 figure

    Superradiance: Axionic Couplings and Plasma Effects

    Full text link
    Spinning black holes can transfer a significant fraction of their energy to ultralight bosonic fields via superradiance, condensing them in a co-rotating structure or "cloud". This mechanism turns black holes into powerful particle detectors for bosons with extremely feeble interactions. To explore its full potential, the couplings between such particles and the Maxwell field in the presence of plasma need to be understood. In this work, we study these couplings using numerical relativity. We first focus on the coupled axion-Maxwell system evolving on a black hole background. By taking into account the axionic coupling concurrently with the growth of the cloud, we observe for the first time that a new stage emerges: that of a stationary state where a constant flux of electromagnetic waves is fed by superradiance, for which we find accurate analytical estimates. Moreover, we show that the existence of electromagnetic instabilities in the presence of plasma is entirely controlled by the axionic coupling; even for dense plasmas, an instability is triggered for high enough couplings.Comment: 32 pages, 23 figure

    Disks, spikes, and clouds: distinguishing environmental effects on BBH gravitational waveforms

    Full text link
    Future gravitational wave interferometers such as LISA, Taiji, DECIGO, and TianQin, will enable precision studies of the environment surrounding black holes. In this paper, we study intermediate and extreme mass ratio binary black hole inspirals, and consider three possible environments surrounding the primary black hole: accretion disks, dark matter spikes, and clouds of ultra-light scalar fields, also known as gravitational atoms. We present a Bayesian analysis of the detectability and measurability of these three environments. Focusing for concreteness on the case of a detection with LISA, we show that the characteristic imprint they leave on the gravitational waveform would allow us to identify the environment that generated the signal, and to accurately reconstruct its model parameters.Comment: 8 pages, 4 figures, 2 tables plus appendice

    Waveform Modelling for the Laser Interferometer Space Antenna

    Full text link
    LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the beginnings of inspirals that will venture into the ground-based detectors' view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA's discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This white paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome.Comment: 239 pages, 11 figures, white paper from the LISA Consortium Waveform Working Group, invited for submission to Living Reviews in Relativity, updated with comments from communit
    corecore