21 research outputs found
Autologous Lipofilling Improves Clinical Outcome in Patients With Symptomatic Dermal Scars Through Induction of a Pro-Regenerative Immune Response
BACKGROUND: Autologous lipofilling is an emerging procedure to treat and possibly reverse dermal scars and to reduce scar-related pain, but its efficacy and mechanisms are poorly understood. OBJECTIVES: The aim of this study was to test the hypothesis that repeated lipografts reverse dermal scars by reinitiation of wound healing. METHODS: In a prospective, non-placebo-controlled clinical study, 27 adult patients with symptomatic scars were given 2 lipofilling treatments at 3-month intervals. As primary outcome, clinical effects were measured with the Patient and Observer Scar Assessment Scale (POSAS). Scar biopsies were taken before and after treatments to assess scar remodeling at a cellular level. RESULTS: Twenty patients completed the study. Patients’ scars improved after lipofilling. The total POSAS scores (combined patient and observer scores) decreased from 73.2  [14.7] points (mean [standard deviation]) pretreatment to 46.1 [14.0] and 32.3 [13.2] points after the first and second lipofilling treatment, respectively. Patient POSAS scores decreased from 37.3 [8.8] points to 27.2 [11.3] and 21.1 [11.4] points, whereas observer POSAS scores decreased from 35.9 [9.5] points to 18.9 [6.0] and 11.3 [4.5] points after the first and second treatment, respectively. After each lipofilling treatment, T lymphocytes, mast cells, and M2 macrophages had invaded scar tissue and were associated with increased vascularization. In addition, the scar-associated epidermis showed an increase in epidermal cell proliferation to levels similar to that normal in skin. Moreover, lipofilling treatment caused normalization of the extracellular matrix organization towards that of normal skin. CONCLUSIONS: Autologous lipofilling improves the clinical outcome of dermal scars through the induction of a pro-regenerative immune response, increased vascularization, and epidermal proliferation and remodeling of scar tissue extracellular matrix. LEVEL OF EVIDENCE: 4: [Image: see text
Efficacy and Safety of Panitumumab in Patients With RAF/RAS-Wild-Type Glioblastoma: Results From the Drug Rediscovery Protocol
BACKGROUND: The prognosis of malignant primary high-grade brain tumors, predominantly glioblastomas, is poor despite intensive multimodality treatment options. In more than 50% of patients with glioblastomas, potentially targetable mutations are present, including rearrangements, altered splicing, and/or focal amplifications of epidermal growth factor receptor (EGFR) by signaling through the RAF/RAS pathway. We studied whether treatment with the clinically available anti-EGFR monoclonal antibody panitumumab provides clinical benefit for patients with RAF/RAS-wild-type (wt) glioblastomas in the Drug Rediscovery Protocol (DRUP). METHODS: Patients with progression of treatment refractory RAF/RASwt glioblastoma were included for treatment with panitumumab in DRUP when measurable according to RANO criteria. The primary endpoints of this study are clinical benefit (CB: defined as confirmed objective response [OR] or stable disease [SD] ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and up to 24 patients in stage 2 if at least 1 in 8 patients had CB in stage 1. RESULTS: Between 03-2018 and 02-2022, 24 evaluable patients were treated. CB was observed in 5 patients (21%), including 2 patients with partial response (8.3%) and 3 patients with SD ≥ 16 weeks (12.5%). After median follow-up of 15 months, median progression-free survival and overall survival were 1.7 months (95% CI 1.6-2.1 months) and 4.5 months (95% CI 2.9-8.6 months), respectively. No unexpected toxicities were observed. CONCLUSIONS: Panitumumab treatment provides limited CB in patients with recurrent RAF/RASwt glioblastoma precluding further development of this therapeutic strategy
Trastuzumab plus pertuzumab for HER2-amplified advanced colorectal cancer: Results from the drug rediscovery protocol (DRUP)
BACKGROUND: In 2-5% of patients with colorectal cancer (CRC), human epidermal growth factor 2 (HER2) is amplified or overexpressed. Despite prior evidence that anti-HER2 therapy confers clinical benefit (CB) in one-third of these patients, it is not approved for this indication in Europe. In the Drug Rediscovery Protocol (DRUP), patients are treated with off-label drugs based on their molecular profile. Here, we present the results of the cohort 'trastuzumab/pertuzumab for treatment-refractory patients with RAS/BRAF-wild-type HER2amplified metastatic CRC (HER2+mCRC)'. METHODS: Patients with progressive treatment-refractory RAS/BRAF-wild-type HER2+mCRC with measurable disease were included for trastuzumab plus pertuzumab treatment. Primary endpoints of DRUP are CB (defined as confirmed objective response (OR) or stable disease (SD) ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and 24 patients in stage 2 if at least 1/8 patients had CB. To identify biomarkers for response, whole genome sequencing (WGS) was performed on pre-treatment biopsies. RESULTS: CB was observed in 11/24 evaluable patients (46%) with HER2+mCRC, seven patients achieved an OR (29%). Median duration of response was 8.4 months. Patients had undergone a median of 3 prior treatment lines. Median progression-free survival and overall survival were 4.3 months (95% CI 1.9-10.3) and 8.2 months (95% CI 7.2-14.7), respectively. No unexpected toxicities were observed. WGS provided potential explanations for resistance in 3/10 patients without CB, for whom WGS was available. CONCLUSIONS: The results of this study confirm a clinically significant benefit of trastuzumab plus pertuzumab treatment in patients with HER2+mCRC
Efficacy and Safety of Panitumumab in Patients With <i>RAF/RAS</i>-Wild-Type Glioblastoma:Results From the Drug Rediscovery Protocol
BACKGROUND: The prognosis of malignant primary high-grade brain tumors, predominantly glioblastomas, is poor despite intensive multimodality treatment options. In more than 50% of patients with glioblastomas, potentially targetable mutations are present, including rearrangements, altered splicing, and/or focal amplifications of epidermal growth factor receptor (EGFR) by signaling through the RAF/RAS pathway. We studied whether treatment with the clinically available anti-EGFR monoclonal antibody panitumumab provides clinical benefit for patients with RAF/RAS-wild-type (wt) glioblastomas in the Drug Rediscovery Protocol (DRUP). METHODS: Patients with progression of treatment refractory RAF/RASwt glioblastoma were included for treatment with panitumumab in DRUP when measurable according to RANO criteria. The primary endpoints of this study are clinical benefit (CB: defined as confirmed objective response [OR] or stable disease [SD] ≥ 16 weeks) and safety. Patients were enrolled using a Simon-like 2-stage model, with 8 patients in stage 1 and up to 24 patients in stage 2 if at least 1 in 8 patients had CB in stage 1. RESULTS: Between 03-2018 and 02-2022, 24 evaluable patients were treated. CB was observed in 5 patients (21%), including 2 patients with partial response (8.3%) and 3 patients with SD ≥ 16 weeks (12.5%). After median follow-up of 15 months, median progression-free survival and overall survival were 1.7 months (95% CI 1.6-2.1 months) and 4.5 months (95% CI 2.9-8.6 months), respectively. No unexpected toxicities were observed. CONCLUSIONS: Panitumumab treatment provides limited CB in patients with recurrent RAF/RASwt glioblastoma precluding further development of this therapeutic strategy.</p
Isolation of Stromal Vascular Fraction by Fractionation of Adipose Tissue
Adipose tissue-derived stromal cells (ASCs) are a promising candidates for cellular therapy in the field of regenerative medicine. ASCs are multipotent mesenchymal stem cell-like and reside in the stromal vascular fraction (SVF) of adipose tissue with the capacity to secrete a plethora of pro-regenerative growth factors. Future applications of ASCs may be restricted through (trans)national governmental policies that do not allow for use of nonhuman-derived (non-autologous) enzymes to isolate ASC. Besides, enzymatic isolation procedures are also time consuming. To overcome this issue, nonenzymatic isolation procedures to isolate ASCs or the SVF are being developed, such as the fractionation of adipose tissue procedure (FAT). This standardized procedure to isolate the stromal vascular fraction can be performed within 10-12 min. The short procedure time allows for intraoperative isolation of 1 mL of stromal vascular fraction derived from 10 mL of centrifuged adipose tissue. The stromal vascular fraction mostly contains blood vessels, extracellular matrix, and ASCs. However, based on the histological stainings an interdonor variation exists which might result in different therapeutic effects. The existing interdonor variations can be addressed by histological stainings and flow cytometry