94 research outputs found

    Receptor antagonism/agonism can be uncoupled from pharmacoperone activity

    Get PDF
    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist

    Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate

    Get PDF
    ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics

    Advanced Development of Primary Pancreatic Organoid Tumor Models for High-Throughput Phenotypic Drug Screening.

    Get PDF
    Traditional high-throughput drug screening in oncology routinely relies on two-dimensional (2D) cell models, which inadequately recapitulate the physiologic context of cancer. Three-dimensional (3D) cell models are thought to better mimic the complexity of in vivo tumors. Numerous methods to culture 3D organoids have been described, but most are nonhomogeneous and expensive, and hence impractical for high-throughput screening (HTS) purposes. Here we describe an HTS-compatible method that enables the consistent production of organoids in standard flat-bottom 384- and 1536-well plates by combining the use of a cell-repellent surface with a bioprinting technology incorporating magnetic force. We validated this homogeneous process by evaluating the effects of well-characterized anticancer agents against four patient-derived pancreatic cancer KRAS mutant-associated primary cells, including cancer-associated fibroblasts. This technology was tested for its compatibility with HTS automation by completing a cytotoxicity pilot screen of ~3300 approved drugs. To highlight the benefits of the 3D format, we performed this pilot screen in parallel in both the 2D and 3D assays. These data indicate that this technique can be readily applied to support large-scale drug screening relying on clinically relevant, ex vivo 3D tumor models directly harvested from patients, an important milestone toward personalized medicine

    Fibro-Vascular Coupling in the Control of Cochlear Blood Flow

    Get PDF
    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained.We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation.The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity

    Lead Identification using 3D Models of Pancreatic Cancer: Development of 3D Tumor Models for High-throughput Screening.

    Get PDF
    Recent technological advances have enabled 3D tissue culture models for fast and affordable HTS. We are no longer bound to 2D models for anti-cancer agent discovery, and it is clear that 3D tumor models provide more predictive data for translation of preclinical studies. In a previous study, we validated a microplate 3D spheroid-based technology for its compatibility with HTS automation. Small-scale screens using approved drugs have demonstrated that drug responses tend to differ between 2D and 3D cancer cell proliferation models. Here, we applied this 3D technology to the first ever large-scale screening effort completing HTS on over 150K molecules against primary pancreatic cancer cells. It is the first demonstration that a screening campaign of this magnitude using clinically relevant, ex-vivo 3D pancreatic tumor models established directly from biopsy, can be readily achieved in a fashion like traditional drug screen using 2D cell models. We identified four unique series of compounds with sub micromolar and even low nanomolar potency against a panel of patient derived pancreatic organoids. We also applied the 3D technology to test lead efficacy in autologous cancer associated fibroblasts and found a favorable profile for better efficacy in the cancer over wild type primary cells, an important milestone towards better leads. Importantly, the initial leads have been further validated in across multiple institutes with concordant outcomes. The work presented here represents the genesis of new small molecule leads found using 3D models of primary pancreas tumor cells

    Long-term follow-up of patients treated with radiotherapy alone for early-stage histologically aggressive non-Hodgkin's lymphoma

    Get PDF
    Historically localised aggressive non-Hodgkin's lymphoma (NHL) has been treated with involved field radiotherapy (RT), chemotherapy, or a combination of both modalities. The current weight of evidence supports a preference for combined modality treatment (CMT). Increased patient age at diagnosis is well recognised as a poor prognostic indicator in NHL, but despite this some perceive CMT as too toxic for use in the elderly. As a result, some older patients continue to be offered RT alone. Here, we present long-term follow-up of 377 adults of all ages treated with RT alone for early-stage diffuse large-cell lymphoma on British National Lymphoma Investigation trials between 1974 and 1997. 10-year cause-specific survival in patients older than 60 years was poor and significantly inferior to that in younger patients (47 and 75% respectively; P<0.001). There is growing evidence that short-course chemotherapy, with or without RT, is superior to RT alone in early-stage aggressive NHL, in elderly as well as in younger patients. Increased age alone should not exclude patients from systemic treatment for early-stage aggressive NHL

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Pharmacoperone rescue of vasopressin 2 receptor mutants reveals unexpected constitutive activity and coupling bias.

    Full text link
    Pharmacoperones are small molecules that diffuse into cells and rescue misfolded, mistrafficked protein mutants, restoring their function. These substances act with high target specificity, serving as templates to fold (or refold) receptors, enzymes, ion channels or other proteins and enable them to pass the scrutiny of the cellular quality control system ("rescue"). In the present study we demonstrate that a rescued mutant (L83Q) of the vasopressin type 2 receptor (V2R), shows a strong bias for Gs coupling unlike the WT V2 receptor, which couples to both Gs and Gq/11. Failure of the mutant to couple to Gq/11 was not due to a limiting quantity of G-proteins since other Gq/11-coupled receptors (WT V2R, histamine receptor and muscarinic receptor) responded appropriately to their ligands. Transfection with DNA encoding Gq enabled the V2 receptor mutant to couple to this G protein, but only modestly compared with the WT receptor. Fourteen V2R mutant pharmacoperones, of multiple chemical classes, obtained from a high throughput screen of a 660,000 structure library, and one V2R peptidomimetic antagonist rescues L83Q. The rescued mutant shows similar bias with all pharmacoperones identified, suggesting that the bias is intrinsic to the mutant protein's structure, rather than due to the chemical class of the pharmacoperone. In the case of V2R mutant Y128S, rescue with a pharmacoperone revealed constitutive activity, also with bias for Gs, although both IP and cAMP were produced in response to agonist. These results suggest that particular rescued receptor mutants show functional characteristics that differ from the WT receptor; a finding that may be important to consider as pharmacoperones are developed as therapeutic agents
    corecore