76 research outputs found
Evolving Planck Mass in Classically Scale-Invariant Theories
We consider classically scale-invariant theories with non-minimally coupled
scalar fields, where the Planck mass and the hierarchy of physical scales are
dynamically generated. The classical theories possess a fixed point, where
scale invariance is spontaneously broken. In these theories, however, the
Planck mass becomes unstable in the presence of explicit sources of scale
invariance breaking, such as non-relativistic matter and cosmological constant
terms. We quantify the constraints on such classical models from Big Bang
Nucleosynthesis that lead to an upper bound on the non-minimal coupling and
require trans-Planckian field values. We show that quantum corrections to the
scalar potential can stabilise the fixed point close to the minimum of the
Coleman-Weinberg potential. The time-averaged motion of the evolving fixed
point is strongly suppressed, thus the limits on the evolving gravitational
constant from Big Bang Nucleosynthesis and other measurements do not presently
constrain this class of theories. Field oscillations around the fixed point, if
not damped, contribute to the dark matter density of the Universe.Comment: 28 pages, 2 figures, version published in JHE
Equilibrium ion distribution in the presence of clearing electrodes and its influence on electron dynamics
Here we compute the ion distribution produced by an electron beam when
ion-clearing electrodes are installed. This ion density is established as an
equilibrium between gas ionization and ion clearing. The transverse ion
distributions are shown to strongly peak in the beam's center, producing very
nonlinear forces on the electron beam. We will analyze perturbations to the
beam properties by these nonlinear fields. To obtain reasonable simulation
speeds, we develop fast algorithms that take advantage of adiabatic invariants
and scaling properties of Maxwell's equations and the Lorentz force.
Our results are very relevant for high current Energy Recovery Linacs, where
ions are produced relatively quickly, and where clearing gaps in the electron
beam cannot easily be used for ion elimination. The examples in this paper
therefore use parameters of the Cornell Energy Recovery Linac project. For
simplicity we only consider the case of a circular electron beam of changing
diameter. However, we parameterize this model to approximate non-round beams
well. We find suitable places for clearing electrodes and compute the
equilibrium ion density and its effect on electron-emittance growth and halo
development. We find that it is not sufficient to place clearing electrodes
only at the minimum of the electron beam potential where ions are accumulated
Single Cs Atoms as Collisional Probes in a large Rb Magneto-Optical Trap
We study cold inter-species collisions of Caesium and Rubidium in a strongly
imbalanced system with single and few Cs atoms. Observation of the single atom
fuorescence dynamics yields insight into light-induced loss mechanisms, while
both subsystems can remain in steady-state. This significantly simplifies the
analysis of the dynamics, as Cs-Cs collisions are effectively absent and the
majority component remains unaffected, allowing us to extract a precise value
of the Rb-Cs collision parameter. Extending our results to ground state
collisions would allow to use single neutral atoms as coherent probes for
larger quantum systems.Comment: 6 pages, 4 figure
The impact of crash simulation on productivity and problem-solving in automotive R&D
This paper analyzes the impact of the virtual tool 'crash simulation' on automotive R&D over the last 35 years. The research carried out in this context identifies and investigates distinct phases respectively stages of the potential of crash simulations based on the Finite Element Method and the stages' impact on automotive R&D in-depth. In a study of German Original Equipment Manufacturers' (OEM) utilization of crash simulations, the evolution of this tool is explored and its impact on productivity and problem-solving investigated. We draw upon literature about crash simulations in car development projects, the utilization of crash simulations in related tasks, and recent literature about the overall impact of crash simulations on automotive R&D. The significance of the tool 'crash simulation' for the OEMs is emphasized by means of corresponding landmark projects. Our study is based on qualitative research based on 29 in-depth interviews with experts from all of the major German OEMs and experts from the US-American academia. Our analysis results in partitioning the tool's evolution into five phases. Each phase is characterized by its impact on automotive R&D. The phases induced profound changes either in productivity or in the ability of problem-solving. Understanding these profound changes and its triggers holds the key to better understanding the potential of virtual simulation tools and the requirements necessary to unlock this potential
A SUSY Inspired Simplified Model for the 750 GeV Diphoton Excess
The evidence for a new singlet scalar particle from the 750 GeV diphoton
excess, and the absence of any other signal of new physics at the LHC so far,
suggest the existence of new coloured scalars. To study this possibility, we
propose a supersymmetry inspired simplified model, extending the Standard Model
with a singlet scalar and with heavy scalar fields carrying both colour and
electric charges -- the `squarks'. To allow the latter to decay, and to
generate the dark matter of the Universe, we also add a neutral fermion to the
particle content. We show that this model provides a two-parameter fit to the
observed diphoton excess consistently with cosmology, while the allowed
parameter space is bounded by the consistency of the model. In the context of
our simplified model this implies the existence of other supersymmetric
particles accessible at the LHC, rendering this scenario falsifiable. If this
excess persists, it will imply a paradigm shift in assessing supersymmetry
breaking and the role of scalars in low scale physics.Comment: 7 pages, 2 figures, SUSY incarnat
Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation
Optical resonators are used for the realisation of ultra-stable frequency lasers. The use of high reflectivity multi-band coatings allows the frequency locking of several lasers of different wavelengths to a single cavity. While the noise processes for single wavelength cavities are well known, the correlation caused by multi-stack coatings has as yet not been analysed experimentally. In our work, we stabilise the frequency of a 729 nm and a 1069 nm laser to one mirror pair and determine the residual-amplitude modulation (RAM) and photo-thermal noise (PTN). We find correlations in PTN between the two lasers and observe coherent cancellation of PTN for the 1069 nm coating. We show that the fractional frequency instability of the 729 nm laser is limited by RAM at 1 × 10−14. The instability of the 1069 nm laser is at 3 × 10−15 close to the thermal noise limit of 1.5 × 10−1
Coherent photo-thermal noise cancellation in a dual-wavelength optical cavity for narrow-linewidth laser frequency stabilisation
Optical resonators are used for the realisation of ultra-stable frequency
lasers. The use of high reflectivity multi-band coatings allows the frequency
locking of several lasers of different wavelengths to a single cavity. While
the noise processes for single wavelength cavities are well known, the
correlation caused by multi-stack coatings has as yet not been analysed
experimentally. In our work, we stabilise the frequency of a nm and a
nm laser to one mirror pair and determine the residual-amplitude
modulation (RAM) and photo-thermal noise (PTN). We find correlations in PTN
between the two lasers and observe coherent cancellation of PTN for the
nm coating. We show that the fractional frequency instability of the
nm laser is limited by RAM at . The instability of the
nm laser is at close to the thermal noise limit of
.Comment: 17 pages, 5 figure
Opposing prognostic relevance of junction plakoglobin in distinct prostate cancer patient subsets
Both oncogenic and tumor suppressor functions have been described for junction plakoglobin (JUP), also known as γ-catenin. To clarify the role of JUP in prostate cancer, JUP protein expression was immunohistochemically detected in a tissue microarray containing 11 267 individual prostatectomy specimens. Considering all patients, high JUP expression was associated with adverse tumor stage (P = 0.0002), high Gleason grade (P < 0.0001), and lymph node metastases (P = 0.011). These associations were driven mainly by the subset without TMPRSS2:ERG fusion, in which high JUP expression was an independent predictor of poor prognosis (multivariate analyses, P = 0.0054) and early biochemical recurrence (P = 0.0003). High JUP expression was further linked to strong androgen receptor expression (P < 0.0001), high cell proliferation, and PTEN and FOXP1 deletion (P < 0.0001). In the ERG-negative subset, high JUP expression was additionally linked to MAP3K7 (P = 0.0007) and CHD1 deletion (P = 0.0021). Contrasting the overall prognostic effect of JUP, low JUP expression indicated poor prognosis in the fraction of CHD1-deleted patients (P = 0.039). In this subset, the association of high JUP and high cell proliferation was specifically absent. In conclusion, the controversial biological roles of JUP are reflected by antagonistic prognostic effects in distinct prostate cancer patient subsets
A Collider Signature of the Supersymmetric Golden Region
Null results of experimental searches for the Higgs boson and the
superpartners imply a certain amount of fine-tuning in the electroweak sector
of the Minimal Supersymmetric Standard Model (MSSM). The "golden region" in the
MSSM parameter space is the region where the experimental constraints are
satisfied and the amount of fine-tuning is minimized. In this region, the stop
trilinear soft term is large, leading to a significant mass splitting between
the two stop mass eigenstates. As a result, the decay of the heavier stop into
the lighter stop and a Z boson is kinematically allowed throughout the golden
region. We propose that the experiments at the Large Hadron Collider (LHC) can
search for this decay through an inclusive signature, Z+2jb+missing Et+X. We
evaluate the Standard Model backgrounds for this channel, and identify a set of
cuts that would allow detection of the supersymmetric contribution at the LHC
for the MSSM parameters typical of the golden region. We also discuss other
possible interpretations of a signal for new physics in the Z+2jb+missing Et+X
channel, and suggest further measurements that could be used to distinguish
among these interpretations.Comment: 23 pages, 5 figures. New in v4: an error fixed in Eq. (13); results
unaffecte
Two Simple W' Models for the Early LHC
W' gauge bosons are good candidates for early LHC discovery. We define two
reference models, one containing a W'_R and one containing a W'_L, which may
serve as ``simplified models'' for presenting experimental results of W'
searches at the LHC. We present the Tevatron bounds on each model and compute
the constraints from precision electroweak observables. We find that indirect
low-energy constraints on the W'_L are quite strong. However, for a W'_R
coupling to right-handed fermions there exists a sizeable region in parameter
space beyond the bounds from the Tevatron and low-energy precision measurements
where even 50 inverse picobarns of integrated LHC luminosity are sufficient to
discover the W'_R. The most promising final states are two leptons and two
jets, or one lepton recoiling against a ``neutrino jet''. A neutrino jet is a
collimated object consisting of a hard lepton and two jets arising from the
decay of a highly boosted massive neutrino.Comment: 20 pages, 8 figures. v2: references adde
- …