18 research outputs found
Why angiotensin II is a poor choice for circulatory support of ventilated COVID-19 patients compared to vasopressin
Early in the COVID-19 pandemic when it was first reported that SARS-CoV-2 used membrane-bound angiotensin-converting enzyme-2 (ACE2) as its receptor for entry into cells, warnings were raised against the use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) because of their potential to increase ACE2 expression. These reports ignored the adverse effects that the renin-angiotensin system (RAS) exerts on the cardiovascular system and kidneys via its primary hormone angiotensin (Ang) II acting upon AT1 receptors that could exacerbate the cytokine storm induced by SARS-CoV-2 [1]. At one point it was even recommended that COVID-19 patients suffering from cardiovascular collapse be administered Ang II to restore blood pressure rather than norepinephrine or vasopressin [2]. An alternative strategy for treating COVID-19 was the administration of soluble ACE2 (sACE2) to act as a decoy receptor for the virus, misdirecting it away from vulnerable cells expressing membrane bound ACE2 [3-5]. However, a paper published in early 2021 [6] described a scenario in which sACE2 and vasopressin played essential roles in SARS-CoV-2 infection of cells vulnerable to the virus. This commentary challenges both the [2] and [6] reports based upon their misconceptions and technical errors that pose a threat to the administration of life-saving therapies for severely affected COVID-19 patients
Distribution of non-AT(1), non-AT(2) binding of (125)I-Sarcosine(1), Isoleucine(8) angiotensin II in neurolysin knockout mouse brains
The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 microM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology
Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-AT1, non-AT2 angiotensin binding site
Recently, we discovered a novel non-AT1, non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to 2-D gel electrophoresis followed by mass spectrometry identification of proteins in the 2-D gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated (IP) after photoradiolabeling. IP studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins