464 research outputs found
Temperature influence on the carbon isotopic composition of Orbulina universa and Globigerina bulloides (planktonic foraminifera)
Laboratory experiments with the planktonic foraminifera Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic) were used to examine the effects of temperature, irradiance (symbiont photosynthesis), [CO32-], [HPO42-], and ontogeny on shell d13C values. In ambient seawater ([CO32-] = 171 mmol kg-1), the d13C of O. universa shells grown under low light (LL) levels is insensitive to temperature and records the d13C value of seawater TCO2. In contrast, the d13C of high light (HL) shells increases ~0.4‰ across 15-25°C (+0.050‰/°C). This suggests that the d13C enrichment due to symbiont photosynthetic activity is temperature-dependent. A comparison of HL O. universa grown in elevated [CO32-] seawater with ambient specimens shows that temperature does not affect the slope of the d13C/[CO32-] relationship previously described [Spero et al., 1997]. The d13C of G. bulloides shells decreases across the 15-24°C temperature range and d13C:temperature slopes decrease with increasing shell size (-0.13, -0.10, and -0.09‰/°C in 11- 12-, and 13-chambered shells, respectively). The pattern of lower d13C values at higher temperatures likely results from the incorporation of more respired CO2 into the shell at higher metabolic rates. The d13C of HL O. universa increases with increased seawater [HPO42-]
Long Range Forces from Two Neutrino Exchange Revisited
The exchange of two massless neutrinos gives rise to a long range force which
couples to weakly charged matter. As has been noted previously in the
literature, the potential for this force is \VN \propto G_{F}^2 / r^5 with
monopole-monople, spin-spin and more complicated interactions. Unfortunately,
this is far too small to be observed in present day experiments. We calculate
\VN explicitly in the electroweak theory, and show that under very general
assumptions forces arising from the exchange of two massless fermions can at
best yield potentials.Comment: 5 pages + 1 figure (not included), UFIFT-HEP-92-28/HUTP-92-A04
Assessing the Added Value of Dynamical Downscaling Using the Standardized Precipitation Index
In this study, the Standardized Precipitation Index (SPI) is used to ascertain the added value of dynamical downscaling over the contiguous United States. WRF is used as a regional climate model (RCM) to dynamically downscale reanalysis fields to compare values of SPI over drought timescales that have implications for agriculture and water resources planning. The regional climate generated by WRF has the largest improvement over reanalysis for SPI correlation with observations as the drought timescale increases. This suggests that dynamically downscaled fields may be more reliable than larger-scale fields for water resource applications (e.g., water storage within reservoirs). WRF improves the timing and intensity of moderate to extreme wet and dry periods, even in regions with homogenous terrain. This study also examines changes in SPI from the extreme drought of 1988 and three “drought busting” tropical storms. Each of those events illustrates the importance of using downscaling to resolve the spatial extent of droughts. The analysis of the “drought busting” tropical storms demonstrates that while the impact of these storms on ending prolonged droughts is improved by the RCM relative to the reanalysis, it remains underestimated. These results illustrate the importance and some limitations of using RCMs to project drought
Drones, Virtual Reality, and Modeling: Communicating Catastrophic Dam Failure
Dam failures occur worldwide and can be economically and ecologically devastating. Communicating the scale of these risks to the general public and decision-makers is imperative. Two-dimensional (2D) dam failure hydraulic models inform owners and floodplain managers of flood regimes but have limitations when shared with non-specialists. This study addresses these limitations by constructing a 3D Virtual Reality (VR) environment to display the 1976 Teton Dam disaster case study using a pipeline composed of (1) 2D hydraulic model data (extrapolated into 3D), (2) a 3D reconstructed dam, and (3) a terrain model processed from UAS (Uncrewed Airborne System) imagery using Structure from Motion photogrammetry. This study validates the VR environment pipeline on the Oculus Quest 2 VR Headset with the criteria: immersion fidelity, movement, immersive soundscape, and agreement with historical observations and terrain. Through this VR environment, we develop an effective method to share historical events and, with future work, improve hazard awareness; applications of this method could improve citizen engagement with Early Warning Systems. This paper establishes a pipeline to produce a visualization tool for merging UAS imagery, Virtual Reality, digital scene creation, and sophisticated 2D hydraulic models to communicate catastrophic flooding events from natural or human-made levees or dams
Evolution of the density contrast in inhomogeneous dust models
With the help of families of density contrast indicators, we study the
tendency of gravitational systems to become increasingly lumpy with time.
Depending upon their domain of definition, these indicators could be local or
global. We make a comparative study of these indicators in the context of
inhomogeneous cosmological models of Lemaitre--Tolman and Szekeres. In
particular, we look at the temporal asymptotic behaviour of these indicators
and ask under what conditions, and for which class of models, they evolve
monotonically in time. We find that for the case of ever-expanding models,
there is a larger class of indicators that grow monotonically with time,
whereas the corresponding class for the recollapsing models is more restricted.
Nevertheless, in the absence of decaying modes, indicators exist which grow
monotonically with time for both ever-expanding and recollapsing models
simultaneously. On the other hand, no such indicators may found which grow
monotonically if the decaying modes are allowed to exist. We also find the
conditions for these indicators to be non-divergent at the initial singularity
in both models. Our results can be of potential relevance for understanding
structure formation in inhomogeneous settings and in debates regarding
gravitational entropy and arrow of time. In particular, the spatial dependence
of turning points in inhomogeneous cosmologies may result in multiple density
contrast arrows in recollapsing models over certain epochs. We also find that
different notions of asymptotic homogenisation may be deduced, depending upon
the density contrast indicators used.Comment: 22 pages, 1 figure. To be published in Classical and Quantum Gravit
Technical challenges and solutions in representing lakes when using WRF in downscaling applications
The Weather Research and Forecasting (WRF) model is commonly used to make high-resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional downscaled fields, lakes are often poorly resolved in the driving global fields, if they are resolved at all. In such an application, using WRF's default interpolation methods can result in unrealistic lake temperatures and ice cover at inland water points. Prior studies have shown that lake temperatures and ice cover impact the simulation of other surface variables, such as air temperatures and precipitation, two fields that are often used in regional climate applications to understand the impacts of climate change on human health and the environment. Here, alternative methods for setting lake surface variables in WRF for downscaling simulations are presented and contrasted
TRAUMA-RELATED NIGHTMARES AMONG AMERICAN INDIAN VETERANS: VIEWS FROM THE DREAM CATCHER
Abstract: Dreams hold particular relevance in mental health work with American Indians (AI
Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors
We present an approach to experimentally evaluate gravity gradient noise, a
potentially limiting noise source in advanced interferometric gravitational
wave (GW) detectors. In addition, the method can be used to provide sub-percent
calibration in phase and amplitude of modern interferometric GW detectors.
Knowledge of calibration to such certainties shall enhance the scientific
output of the instruments in case of an eventual detection of GWs. The method
relies on a rotating symmetrical two-body mass, a Dynamic gravity Field
Generator (DFG). The placement of the DFG in the proximity of one of the
interferometer's suspended test masses generates a change in the local
gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure
Assessing the Added Value of Dynamical Downscaling Using the Standardized Precipitation Index
In this study, the Standardized Precipitation Index (SPI) is used to ascertain the added value of dynamical downscaling over the contiguous United States. WRF is used as a regional climate model (RCM) to dynamically downscale reanalysis fields to compare values of SPI over drought timescales that have implications for agriculture and water resources planning. The regional climate generated by WRF has the largest improvement over reanalysis for SPI correlation with observations as the drought timescale increases. This suggests that dynamically downscaled fields may be more reliable than larger-scale fields for water resource applications (e.g., water storage within reservoirs). WRF improves the timing and intensity of moderate to extreme wet and dry periods, even in regions with homogenous terrain. This study also examines changes in SPI from the extreme drought of 1988 and three “drought busting” tropical storms. Each of those events illustrates the importance of using downscaling to resolve the spatial extent of droughts. The analysis of the “drought busting” tropical storms demonstrates that while the impact of these storms on ending prolonged droughts is improved by the RCM relative to the reanalysis, it remains underestimated. These results illustrate the importance and some limitations of using RCMs to project drought
- …