255 research outputs found
Progress in Interferometry for LISA at JPL
Recent advances at JPL in experimentation and design for LISA interferometry
include the demonstration of Time Delay Interferometry using electronically
separated end stations, a new arm-locking design with improved gain and
stability, and progress in flight readiness of digital and analog electronics
for phase measurements.Comment: 11 pages, 9 figures, LISA 8 Symposium, Stanford University, 201
Modulator noise suppression in the LISA Time-Delay Interferometric combinations
We previously showed how the measurements of some eighteen time series of
relative frequency or phase shifts could be combined (1) to cancel the phase
noise of the lasers, (2) to cancel the Doppler fluctuations due to non-inertial
motions of the six optical benches, and (3) to remove the phase noise of the
onboard reference oscillators required to track the photodetector fringes, all
the while preserving signals from passinggravitational waves. Here we analyze
the effect of the additional noise due to the optical modulators used for
removing the phase fluctuations of the onboard reference oscillators. We use a
recently measured noise spectrum of an individual modulator to quantify the
contribution of modulator noise to the first and second-generation Time-Delay
Interferometric (TDI) combinations as a function of the modulation frequency.
We show that modulator noise can be made smaller than the expected proof-mass
acceleration and optical-path noises if the modulation frequencies are larger
than MHz in the case of the unequal-arm Michelson TDI combination
, GHz for the Sagnac TDI combination , and
MHz for the symmetrical Sagnac TDI combination . These
modulation frequencies are substantially smaller than previously estimated and
may lead to less stringent requirements on the LISA's oscillator noise
calibration subsystem.Comment: 17 pages, 5 figures. Submitted to: Phys. Rev. D 1
Evolution of the density contrast in inhomogeneous dust models
With the help of families of density contrast indicators, we study the
tendency of gravitational systems to become increasingly lumpy with time.
Depending upon their domain of definition, these indicators could be local or
global. We make a comparative study of these indicators in the context of
inhomogeneous cosmological models of Lemaitre--Tolman and Szekeres. In
particular, we look at the temporal asymptotic behaviour of these indicators
and ask under what conditions, and for which class of models, they evolve
monotonically in time. We find that for the case of ever-expanding models,
there is a larger class of indicators that grow monotonically with time,
whereas the corresponding class for the recollapsing models is more restricted.
Nevertheless, in the absence of decaying modes, indicators exist which grow
monotonically with time for both ever-expanding and recollapsing models
simultaneously. On the other hand, no such indicators may found which grow
monotonically if the decaying modes are allowed to exist. We also find the
conditions for these indicators to be non-divergent at the initial singularity
in both models. Our results can be of potential relevance for understanding
structure formation in inhomogeneous settings and in debates regarding
gravitational entropy and arrow of time. In particular, the spatial dependence
of turning points in inhomogeneous cosmologies may result in multiple density
contrast arrows in recollapsing models over certain epochs. We also find that
different notions of asymptotic homogenisation may be deduced, depending upon
the density contrast indicators used.Comment: 22 pages, 1 figure. To be published in Classical and Quantum Gravit
Sub-millimeter Tests of the Gravitational Inverse-square Law
Motivated by a variety of theories that predict new effects, we tested the
gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using
two different 10-fold azimuthally symmetric torsion pendulums and rotating
10-fold symmetric attractors. Our work improves upon other experiments by up to
a factor of about 100. We found no deviation from Newtonian physics at the 95%
confidence level and interpret these results as constraints on extensions of
the Standard Model that predict Yukawa or power-law forces. We set a constraint
on the largest single extra dimension (assuming toroidal compactification and
that one extra dimension is significantly larger than all the others) of R <=
160 microns, and on two equal-sized large extra dimensions of R <= 130 microns.
Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for
lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are
restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of
large extra dimensions. We also provide new constraints on power-law potentials
V(r)\propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of
pseudoscalars with m <= 10 meV/c^2.Comment: 34 pages, 38 figure
Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system
We analytically compute the long-term orbital variations of a test particle
orbiting a central body acted upon by an incident monochromatic plane
gravitational wave. We assume that the characteristic size of the perturbed
two-body system is much smaller than the wavelength of the wave. Moreover, we
also suppose that the wave's frequency is much smaller than the particle's
orbital one. We make neither a priori assumptions about the direction of the
wavevector nor on the orbital geometry of the planet. We find that, while the
semi-major axis is left unaffected, the eccentricity, the inclination, the
longitude of the ascending node, the longitude of pericenter and the mean
anomaly undergo non-vanishing long-term changes. They are not secular trends
because of the slow modulation introduced by the tidal matrix coefficients and
by the orbital elements themselves. They could be useful to indepenedently
constrain the ultra-low frequency waves which may have been indirectly detected
in the BICEP2 experiment. Our calculation holds, in general, for any
gravitationally bound two-body system whose characteristic frequency is much
larger than the frequency of the external wave. It is also valid for a generic
perturbation of tidal type with constant coefficients over timescales of the
order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the
referees include
The Search for Gravitational Waves
Experiments aimed at searching for gravitational waves from astrophysical
sources have been under development for the last 40 years, but only now are
sensitivities reaching the level where there is a real possibility of
detections being made within the next five years. In this article a history of
detector development will be followed by a description of current detectors
such as LIGO, VIRGO, GEO 600, TAMA 300, Nautilus and Auriga. Preliminary
results from these detectors will be discussed and related to predicted
detection rates for some types of sources. Experimental challenges for detector
design are introduced and discussed in the context of detector developments for
the future.Comment: 21 pages, 7 figures, accepted J. Phys. B: At. Mol. Opt. Phy
Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors
Data collected by the GEO 600 and LIGO interferometric gravitational wave detectors during their first observational science run were searched for continuous gravitational waves from the pulsar J1939+2134 at twice its rotation frequency. Two independent analysis methods were used and are demonstrated in this paper: a frequency domain method and a time domain method. Both achieve consistent null results, placing new upper limits on the strength of the pulsar's gravitational wave emission. A model emission mechanism is used to interpret the limits as a constraint on the pulsar's equatorial ellipticity
Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars
High-frequency corrections to the detector response and their effect on searches for gravitational waves
Searches for gravitational waves with km-scale laser interferometers often
involve the long-wavelength approximation to describe the detector response.
The prevailing assumption is that the corrections to the detector response due
to its finite size are small and the errors due to the long-wavelength
approximation are negligible. Recently, however, Baskaran and Grishchuk (2004
Class. Quantum Grav. 21 4041) found that in a simple Michelson interferometer
such errors can be as large as 10 percent. For more accurate analysis, these
authors proposed to use a linear-frequency correction to the long wavelength
approximation. In this paper we revisit these calculations. We show that the
linear-frequency correction is inadequate for certain locations in the sky and
therefore accurate analysis requires taking into account the exact formula,
commonly derived from the photon round-trip propagation time. Also, we extend
the calculations to include the effect of Fabry-Perot resonators in the
interferometer arms. Here we show that a simple approximation which combines
the long-wavelength Michelson response with the single-pole approximation to
the Fabry-Perot transfer function produces rather accurate results. In
particular, the difference between the exact and the approximate formulae is at
most 2-3 percent for those locations in the sky where the detector response is
greater than half of its maximum value. We analyse the impact of such errors on
detection sensitivity and parameter estimation in searches for periodic
gravitational waves emitted by a known pulsar, and in searches for an isotropic
stochastic gravitational-wave background. At frequencies up to 1 kHz, the
effect of such errors is at most 1-2 percent. For higher frequencies, or if
more accuracy is required, one should use the exact formula for the response.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravity for
GWDAW12 proceeding
First upper limits from LIGO on gravitational wave bursts
We report on a search for gravitational wave bursts using data from the first
science run of the LIGO detectors. Our search focuses on bursts with durations
ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity
band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than
1.6 events per day at 90% confidence level. This result is interpreted in terms
of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians)
as a function of their root-sum-square strain h_{rss}; typical sensitivities
lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on
waveform. We discuss improvements in the search method that will be applied to
future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos
and updated a few reference
- âŠ