25 research outputs found

    Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome

    Get PDF
    The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol e DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1-Tof1-Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication

    Single-molecule visualization of fast polymerase turnover in the bacterial replisome

    Get PDF
    The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment

    When proteins play tag: the dynamic nature of the replisome

    Get PDF
    DNA replication, or the copying of DNA, is a fundamental process to all life. The system of proteins that carries out replication, the replisome, encounters many roadblocks on its way. An inability of the replisome to properly overcome these roadblocks will negatively affect genomic integrity which in turn can lead to disease. Over the past decades, efforts by many researchers using a broad array of approaches have revealed roles for many different proteins during the initial response of the replisome upon encountering roadblocks. Here, we revisit what is known about DNA replication and the effect of roadblocks during DNA replication across different organisms. We also address how advances in single-molecule techniques have changed our view of the replisome from a highly stable machine with behavior dictated by deterministic principles to a dynamic system that is controlled by stochastic processes. We propose that these dynamics will play crucial roles in roadblock bypass. Further single-molecule studies of this bypass will, therefore, be essential to facilitate the in-depth investigation of multi-protein complexes that is necessary to understand complicated collisions on the DNA

    Observing protein dynamics during DNA-lesion bypass by the replisome

    No full text
    Faithful DNA replication is essential for all life. A multi-protein complex called the replisome contains all the enzymatic activities required to facilitate DNA replication, including unwinding parental DNA and synthesizing two identical daughter molecules. Faithful DNA replication can be challenged by both intrinsic and extrinsic factors, which can result in roadblocks to replication, causing incomplete replication, genomic instability, and an increased mutational load. This increased mutational load can ultimately lead to a number of diseases, a notable example being cancer. A key example of a roadblock to replication is chemical modifications in the DNA caused by exposure to ultraviolet light. Protein dynamics are thought to play a crucial role to the molecular pathways that occur in the presence of such DNA lesions, including potential damage bypass. Therefore, many assays have been developed to study these dynamics. In this review, we discuss three methods that can be used to study protein dynamics during replisome–lesion encounters in replication reactions reconstituted from purified proteins. Specifically, we focus on ensemble biochemical assays, single-molecule fluorescence, and cryo-electron microscopy. We discuss two key model DNA replication systems, derived from Escherichia coli and Saccharomyces cerevisiae. The main methods of choice to study replication over the last decades have involved biochemical assays that rely on ensemble averaging. While these assays do not provide a direct readout of protein dynamics, they can often be inferred. More recently, single-molecule techniques including single-molecule fluorescence microscopy have been used to visualize replisomes encountering lesions in real time. In these experiments, individual proteins can be fluorescently labeled in order to observe the dynamics of specific proteins during DNA replication. Finally, cryo-electron microscopy can provide detailed structures of individual replisome components, which allows functional data to be interpreted in a structural context. While classic cryo-electron microscopy approaches provide static information, recent developments such as time-resolved cryo-electron microscopy help to bridge the gap between static structures and dynamic single-molecule techniques by visualizing sequential steps in biochemical pathways. In combination, these techniques will be capable of visualizing DNA replication and lesion encounter dynamics in real time, whilst observing the structural changes that facilitate these dynamics

    Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines

    No full text
    The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes

    Understanding G-Quadruplex Biology and Stability Using Single-Molecule Techniques

    No full text
    The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures. These studies have shown that the degree of stabilization of G-quadruplex structures has a significant effect on the ability of nuclear machinery to bypass these roadblocks on DNA strands. This Review will illustrate how various cellular components including replication protein A (RPA), Bloom syndrome protein (BLM), and Pif1 helicases are capable of unfolding qDNA. Techniques such as single-molecule fluorescence resonance energy transfer (smFRET), often in conjunction with the aforementioned force-based techniques, have proven extremely effective at elucidating the factors underpinning the mechanisms by which these proteins unwind qDNA structures. We will provide insight into how single-molecule tools have facilitated the direct visualization of qDNA roadblocks and also showcase results obtained from experiments designed to examine the ability of G-quadruplexes to limit the access of specific cellular proteins normally associated with telomeres
    corecore