2,071 research outputs found

    MS 099 Guide to William Spencer, MD Papers (1954-2009)

    Get PDF
    The William Spencer, MD papers contains correspondence, financial records, grant records, building schematics, tour schedules, newspaper clippings, telegrams, financial records, academic publications, government testimony, congressional records, research, lectures, and legal records documenting the life of Dr. William Spencer. See more at MS 099

    The Pacific Triangle

    Get PDF
    "The sea has been the inspiration of countless tales, epics, songs, and dramas. Something of this epic and dramatic character appears in these two very different books.

    Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides

    Get PDF
    In an effort to develop reversible metal borohydrides with high hydrogen storage capacities and low dehydriding temperature, doping LiBH4 with various metal halides and hydrides has been conducted. Several metal halides such as TiCl3, TiF3, and ZnF2 effectively reduced the dehydriding temperature through a cation exchange interaction. Some of the halide doped LiBH4 are partially reversible. The LiBH4 + 0.1TiF3 desorbed 3.5 wt % and 8.5 wt % hydrogen at 150 and 450 °C, respectively, with subsequent reabsorption of 6 wt % hydrogen at 500 °C and 70 bar observed. XRD and NMR analysis of the rehydrided samples confirmed the reformation of LiBH4. The existence of the (B12H12)−2 species in dehydrided and rehydrided samples gives insight into the resultant partial reversibility. A number of other halides, MgF2, MgCl2, CaCl2, SrCl2, and FeCl3, did not reduce the dehydriding temperature of LiBH4 significantly. XRD and TGA-RGA analyses indicated that an increasing proportion of halides such as TiCl3, TiF3, and ZnCl2 from 0.1 to 0.5 mol makes lithium borohydrides less stable and volatile. Although the less stable borohydrides such as LiBH4 + 0.5TiCl3, LiBH4 + 0.5TiF3, and LiBH4 + 0.5ZnCl2 release hydrogen at room temperature, they are not reversible due to unrecoverable boron loss caused by diborane emission. In most cases, doping that produced less stable borohydrides also reduced the reversible hydrogen uptake. It was also observed that halide doping changed the melting points and reduced air sensitivity of lithium borohydrides

    Patient perspectives on sharing anonymised personal health data using a digital system for dynamic consent and research feedback: a qualitative study

    Get PDF
    Background: Electronic health records are widely acknowledged to provide an important opportunity to anonymize patient-level health care data and collate across populations to support research. Nonetheless, in the wake of public and policy concerns about security and inappropriate use of data, conventional approaches toward data governance may no longer be sufficient to respect and protect individual privacy. One proposed solution to improve transparency and public trust is known as Dynamic Consent, which uses information technology to facilitate a more explicit and accessible opportunity to opt out. In this case, patients can tailor preferences about whom they share their data with and can change their preferences reliably at any time. Furthermore, electronic systems provide opportunities for informing patients about data recipients and the results of research to which their data have contributed. Objective: To explore patient perspectives on the use of anonymized health care data for research purposes. To evaluate patient perceptions of a Dynamic Consent model and electronic system to enable and implement ongoing communication and collaboration between patients and researchers. Methods: A total of 26 qualitative interviews and three focus groups were conducted that included a video presentation explaining the reuse of anonymized electronic patient records for research. Slides and tablet devices were used to introduce the Dynamic Consent system for discussion. A total of 35 patients with chronic rheumatic disease with varying levels of illness and social deprivation were recruited from a rheumatology outpatient clinic; 5 participants were recruited from a patient and public involvement health research network. Results: Patients were supportive of sharing their anonymized electronic patient record for research, but noted a lack of transparency and awareness around the use of data, making it difficult to secure public trust. While there were general concerns about detrimental consequences of data falling into the wrong hands, such as insurance companies, 39 out of 40 (98%) participants generally considered that the altruistic benefits of sharing health care data outweighed the risks. Views were mostly positive about the use of an electronic interface to enable greater control over consent choices, although some patients were happy to share their data without further engagement. Participants were particularly enthusiastic about the system as a means of enabling feedback regarding data recipients and associated research results, noting that this would improve trust and public engagement in research. This underlines the importance of patient and public involvement and engagement throughout the research process, including the reuse of anonymized health care data for research. More than half of patients found the touch screen interface easy to use, although a significant minority, especially those with limited access to technology, expressed some trepidation and felt they may need support to use the system. Conclusions: Patients from a range of socioeconomic backgrounds viewed a digital system for Dynamic Consent positively, in particular, feedback about data recipients and research results. Implementation of a digital Dynamic Consent system would require careful interface design and would need to be located within a robust data infrastructure; it has the potential to improve trust and engagement in electronic medical record research

    Test of the Binding Threshold Hypothesis for olfactory receptors: Explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912-93

    Get PDF
    We tested the Binding Threshold Hypothesis (BTH) for activation of olfactory receptors (ORs): To activate an OR, the odorant must bind to the OR with binding energy above some threshold value. The olfactory receptor (OR) 912‐93 is known experimentally to be activated by ketones in mouse, but is inactive to ketones in human, despite an amino acid sequence identity of ∌66%. To investigate the origins of this difference, we used the MembStruk first‐principles method to predict the tertiary structure of the mouse OR 912‐93 (mOR912‐93), and the HierDock first‐principles method to predict the binding site for ketones to this receptor. We found that the strong binding of ketones to mOR912‐93 is dominated by a hydrogen bond of the ketone carbonyl group to Ser105. All ketones predicted to have a binding energy stronger than E_(BindThresh) = 26 kcal/mol were observed experimentally to activate this OR, while the two ketones predicted to bind more weakly do not. In addition, we predict that 2‐undecanone and 2‐dodecanone both bind sufficiently strongly to activate mOR912‐93. A similar binding site for ketones was predicted in hOR912‐93, but the binding is much weaker because the human ortholog has a Gly at the position of Ser105. We predict that mutating this Gly to Ser in human should lead to activation of hOR912‐93 by these ketones. Experimental substantiations of the above predictions would provide further tests of the validity of the BTH, our predicted 3D structures, and our predicted binding sites for these ORs

    Quantifying Plant Soluble Protein and Digestible Carbohydrate Content, Using Corn (\u3cem\u3eZea mays\u3c/em\u3e) as an Exemplar

    Get PDF
    Elemental data are commonly used to infer plant quality as a resource to herbivores. However, the ubiquity of carbon in biomolecules, the presence of nitrogen-containing plant defensive compounds, and variation in species-specific correlations between nitrogen and plant protein content all limit the accuracy of these inferences. Additionally, research focused on plant and/or herbivore physiology require a level of accuracy that is not achieved using generalized correlations. The methods presented here offer researchers a clear and rapid protocol for directly measuring plant soluble proteins and digestible carbohydrates, the two plant macronutrients most closely tied to animal physiological performance. The protocols combine well characterized colorimetric assays with optimized plant-specific digestion steps to provide precise and reproducible results. Our analyses of different sweet corn tissues show that these assays have the sensitivity to detect variation in plant soluble protein and digestible carbohydrate content across multiple spatial scales. These include between-plant differences across growing regions and plant species or varieties, as well as within-plant differences in tissue type and even positional differences within the same tissue. Combining soluble protein and digestible carbohydrate content with elemental data also has the potential to provide new opportunities in plant biology to connect plant mineral nutrition with plant physiological processes. These analyses also help generate the soluble protein and digestible carbohydrate data needed to study nutritional ecology, plant-herbivore interactions and food-web dynamics, which will in turn enhance physiology and ecological research

    Correspondence

    Get PDF

    Dynamic consent: a possible solution to improve patient confidence and trust in how electronic patient records are used in medical research

    Get PDF
    With one million people treated every 36 hours, routinely collected UK National Health Service (NHS) health data has huge potential for medical research. Advances in data acquisition from electronic patient records (EPRs) means such data are increasingly digital and can be anonymised for research purposes. NHS England’s care.data initiative recently sought to increase the amount and availability of such data. However, controversy and uncertainty following the care.data public awareness campaign led to a delay in rollout, indicating that the success of EPR data for medical research may be threatened by a loss of patient and public trust. The sharing of sensitive health care data can only be done through maintaining such trust in a constantly evolving ethicolegal and political landscape. We propose that a dynamic consent model, whereby patients can electronically control consent through time and receive information about the uses of their data, provides a transparent, flexible, and user-friendly means to maintain public trust. This could leverage the huge potential of the EPR for medical research and, ultimately, patient and societal benefit

    Dynamic consent: a possible solution to improve patient confidence and trust in how electronic patient records are used in medical research

    Get PDF
    With one million people treated every 36 hours, routinely collected UK National Health Service (NHS) health data has huge potential for medical research. Advances in data acquisition from electronic patient records (EPRs) means such data are increasingly digital and can be anonymised for research purposes. NHS England’s care.data initiative recently sought to increase the amount and availability of such data. However, controversy and uncertainty following the care.data public awareness campaign led to a delay in rollout, indicating that the success of EPR data for medical research may be threatened by a loss of patient and public trust. The sharing of sensitive health care data can only be done through maintaining such trust in a constantly evolving ethicolegal and political landscape. We propose that a dynamic consent model, whereby patients can electronically control consent through time and receive information about the uses of their data, provides a transparent, flexible, and user-friendly means to maintain public trust. This could leverage the huge potential of the EPR for medical research and, ultimately, patient and societal benefit
    • 

    corecore