1,123 research outputs found

    A point process describing the component sizes in the critical window of the random graph evolution

    Full text link
    We study a point process describing the asymptotic behavior of sizes of the largest components of the random graph G(n,p) in the critical window p=n^{-1}+lambda n^{-4/3}. In particular, we show that this point process has a surprising rigidity. Fluctuations in the large values will be balanced by opposite fluctuations in the small values such that the sum of the values larger than a small epsilon is almost constant.Comment: 25 page
    • …
    corecore