512 research outputs found
Deuteron Photodissociation in Ultraperipheral Relativistic Heavy-Ion on Deuteron Collisions
In ultraperipheral relativistic deuteron on heavy-ion collisions, a photon
emitted from the heavy nucleus may dissociate the deuterium ion. We find
deuterium breakup cross sections of 1.38 barns for deuterium-gold collisions at
a center of mass energy of 200 GeV per nucleon, as studied at the Relativistic
Heavy Ion Collider, and 2.49 barns for deuterium-lead collisions at a center of
mass energy of 6.2 TeV, as proposed for the Large Hadron Collider. This cross
section includes an energy-independent 140 mb contribution from hadronic
diffractive dissociation. At the LHC, the cross section is as large as that of
hadronic interactions. The estimated error is 5%. Deuteron dissociation could
be used as a luminosity monitor and a `tag' for moderate impact parameter
collisions.Comment: Final version, to appear in Phys. Rev. C. Diffractive dissociation
included 10 pages with 3 figure
A "Littlest Higgs" Model with Custodial SU(2) Symmetry
In this note, a ``littlest higgs'' model is presented which has an
approximate custodial SU(2) symmetry. The model is based on the coset space
. The light pseudo-goldstone bosons of the theory
include a {\it single} higgs doublet below a TeV and a set of three
triplets and an electroweak singlet in the TeV range. All of these scalars
obtain approximately custodial SU(2) preserving vacuum expectation values. This
model addresses a defect in the earlier moose
model, with the only extra complication being an extended top sector. Some of
the precision electroweak observables are computed and do not deviate
appreciably from Standard Model predictions. In an S-T oblique analysis, the
dominant non-Standard Model contributions are the extended top sector and higgs
doublet contributions. In conclusion, a wide range of higgs masses is allowed
in a large region of parameter space consistent with naturalness, where large
higgs masses requires some mild custodial SU(2) violation from the extended top
sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra
discussion on size of T contributions, as well as some other minor
clarifications. Version to appear in JHE
Critical depinning force and vortex lattice order in disordered superconductors
We simulate the ordering of vortices and its effects on the critical current
in superconductors with varied vortex-vortex interaction strength and varied
pinning strengths for a two-dimensional system. For strong pinning the vortex
lattice is always disordered and the critical depinning force only weakly
increases with decreasing vortex-vortex interactions. For weak pinning the
vortex lattice is defect free until the vortex-vortex interactions have been
reduced to a low value, when defects begin to appear with a simultaneous rapid
increase in the critical depinning force. In each case the depinning force
shows a maximum for non-interacting vortices. The relative height of the peak
increases and the peak width decreases for decreasing pinning strength in
excellent agreement with experimental trends associated with the peak effect.
We show that scaling relations exist between the distance between defects in
the vortex lattice and the critical depinning force.Comment: 5 pages, 6 figure
Transverse depinning in strongly driven vortex lattices with disorder
Using numerical simulations we investigate the transverse depinning of moving
vortex lattices interacting with random disorder. We observe a finite
transverse depinning barrier for vortex lattices that are driven with high
longitudinal drives, when the vortex lattice is defect free and moving in
correlated 1D channels. The transverse barrier is reduced as the longitudinal
drive is decreased and defects appear in the vortex lattice, and the barrier
disappears in the plastic flow regime. At the transverse depinning transition,
the vortex lattice moves in a staircase pattern with a clear transverse
narrow-band voltage noise signature.Comment: 4 pages, 4 figure
Metastability and Transient Effects in Vortex Matter Near a Decoupling Transition
We examine metastable and transient effects both above and below the
first-order decoupling line in a 3D simulation of magnetically interacting
pancake vortices. We observe pronounced transient and history effects as well
as supercooling and superheating between the 3D coupled, ordered and 2D
decoupled, disordered phases. In the disordered supercooled state as a function
of DC driving, reordering occurs through the formation of growing moving
channels of the ordered phase. No channels form in the superheated region;
instead the ordered state is homogeneously destroyed. When a sequence of
current pulses is applied we observe memory effects. We find a ramp rate
dependence of the V(I) curves on both sides of the decoupling transition. The
critical current that we obtain depends on how the system is prepared.Comment: 10 pages, 15 postscript figures, version to appear in PR
A New Approach to Searching for Dark Matter Signals in Fermi-LAT Gamma Rays
Several cosmic ray experiments have measured excesses in electrons and
positrons, relative to standard backgrounds, for energies from ~ 10 GeV - 1
TeV. These excesses could be due to new astrophysical sources, but an
explanation in which the electrons and positrons are dark matter annihilation
or decay products is also consistent. Fortunately, the Fermi-LAT diffuse gamma
ray measurements can further test these models, since the electrons and
positrons produce gamma rays in their interactions in the interstellar medium.
Although the dark matter gamma ray signal consistent with the local electron
and positron measurements should be quite large, as we review, there are
substantial uncertainties in the modeling of diffuse backgrounds and,
additionally, experimental uncertainties that make it difficult to claim a dark
matter discovery. In this paper, we introduce an alternative method for
understanding the diffuse gamma ray spectrum in which we take the intensity
ratio in each energy bin of two different regions of the sky, thereby canceling
common systematic uncertainties. For many spectra, this ratio fits well to a
power law with a single break in energy. The two measured exponent indices are
a robust discriminant between candidate models, and we demonstrate that dark
matter annihilation scenarios can predict index values that require "extreme"
parameters for background-only explanations.Comment: v1: 11 pages, 7 figures, 1 table, revtex4; v2: 13 pages, 8 figures, 1
table, revtex4, Figure 4 added, minor additions made to text, references
added, conclusions unchanged, published versio
Dynamic Ordering and Transverse Depinning of a Driven Elastic String in a Disordered Media
We examine the dynamics of an elastic string interacting with quenched
disorder driven perpendicular and parallel to the string. We show that the
string is the most disordered at the depinning transition but with increasing
drive partial ordering is regained. For low drives the noise power is high and
we observe a 1/f^2 noise signature crossing over to a white noise character
with low power at higher drives. For the parallel driven moving string there is
a finite transverse critical depinning force with the depinning transition
occuring by the formation of running kinks.Comment: 4 pages, 4 postscript figure
A global perspective on collision and non-collision match characteristics in male rugby union: Comparisons by age and playing standard
This study quantified and compared the collision and non-collision match characteristics across age categories (i.e. U12, U14, U16, U18, Senior) for both amateur and elite playing standards from Tier 1 rugby union nations (i.e. England, South Africa, New Zealand). Two-hundred and one male matches (5911 min ball-in-play) were coded using computerised notational analysis, including 193,708 match characteristics (e.g. 83,688 collisions, 33,052 tackles, 13,299 rucks, 1006 mauls, 2681 scrums, 2923 lineouts, 44,879 passes, 5568 kicks). Generalised linear mixed models with post-hoc comparisons and cluster analysis compared the match characteristics by age category and playing standard. Overall significant differences (p < 0.001) between age category and playing standard were found for the frequency of match characteristics, and tackle and ruck activity. The frequency of characteristics increased with age category and playing standard except for scrums and tries that were the lowest at the senior level. For the tackle, the percentage of successful tackles, frequency of active shoulder, sequential and simultaneous tackles increased with age and playing standard. For ruck activity, the number of attackers and defenders were lower in U18 and senior than younger age categories. Cluster analysis demonstrated clear differences in all and collision match characteristics and activity by age category and playing standard. These findings provide the most comprehensive quantification and comparison of collision and non-collision activity in rugby union demonstrating increased frequency and type of collision activity with increasing age and playing standard. These findings have implications for policy to ensure the safe development of rugby union players throughout the world.</p
Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries
We investigate the pinning and driven dynamics of vortices interacting with
twin boundaries using large scale molecular dynamics simulations on samples
with near one million pinning sites. For low applied driving forces, the vortex
lattice orients itself parallel to the twin boundary and we observe the
creation of a flux gradient and vortex free region near the edges of the twin
boundary. For increasing drive, we find evidence for several distinct dynamical
flow phases which we characterize by the density of defects in the vortex
lattice, the microscopic vortex flow patterns, and orientation of the vortex
lattice. We show that these different dynamical phases can be directly related
to microscopically measurable voltage - current V(I) curves and voltage noise.
By conducting a series of simulations for various twin boundary parameters we
derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.
Critical Currents and Vortex States at Fractional Matching Fields in Superconductors with Periodic Pinning
We study vortex states and dynamics in 2D superconductors with periodic
pinning at fractional sub-matching fields using numerical simulations. For
square pinning arrays we show that ordered states form at 1/1, 1/2, and 1/4
filling fractions while only partially ordered states form at other filling
fractions, such as 1/3 and 1/5, in agreement with recent imaging experiments.
For triangular pinning arrays we observe matching effects at filling fractions
of 1/1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7. For both square and triangular
pinning arrays we also find that, for certian sub-matching fillings, vortex
configurations depend on pinning strength. For weak pinning, ordering in which
a portion of the vortices are positioned between pinning sites can occur.
Depinning of the vortices at the matching fields, where the vortices are
ordered, is elastic while at the incommensurate fields the motion is plastic.
At the incommensurate fields, as the applied driving force is increased, there
can be a transition to elastic flow where the vortices move along the pinning
sites in 1D channels and a reordering transition to a triangular or distorted
triangular lattice. We also discuss the current-voltage curves and how they
relate to the vortex ordering at commensurate and incommensurate fields.Comment: 14 figure
- …