250 research outputs found
Relation of gallbladder function and Helicobacter pylori infection to gastric mucosa inflammation in patients with symptomatic cholecystolithiasis
Background. Inflammatory alterations of the gastric mucosa are commonly caused by Helicobacter pylori (Hp) infection in patients with symptomatic gallstone disease. However, the additional pathogenetic role of an impaired gallbladder function leading to an increased alkaline duodenogastric reflux is controversially discussed. Aim:To investigate the relation of gallbladder function and Hp infection to gastric mucosa inflammation in patients with symptomatic gallstones prior to cholecystectomy. Patients: Seventy-three patients with symptomatic gallstones were studied by endoscopy and Hp testing. Methods: Gastritis classification was performed according to the updated Sydney System and gallbladder function was determined by total lipid concentration of gallbladder bile collected during mainly laparoscopic cholecystectomy. Results: Fifteen patients revealed no, 39 patients mild, and 19 moderate to marked gastritis. No significant differences for bile salts, phospholipids, cholesterol, or total lipids in gallbladder bile were found between these three groups of patients. However, while only 1 out of 54 (< 2%) patients with mild or no gastritis was found histologically positive for Hp, this infection could be detected in 14 (74%) out of 19 patients with moderate to marked gastritis. Conclusion: Moderate to marked gastric mucosa inflammation in gallstone patients is mainly caused by Hp infection, whereas gallbladder function is not related to the degree of gastritis. Thus, an increased alkaline duodenogastric reflux in gallstone patients seems to be of limited pathophysiological relevance. Copyright (c) 2006 S. Karger AG, Basel
TGF-β Inducible Early Gene 1 Regulates Osteoclast Differentiation and Survival by Mediating the NFATc1, AKT, and MEK/ERK Signaling Pathways
TGF-β Inducible Early Gene-1 (TIEG1) is a Krüppel-like transcription factor (KLF10) that was originally cloned from human osteoblasts as an early response gene to TGF-β treatment. As reported previously, TIEG1−/− mice have decreased cortical bone thickness and vertebral bone volume and have increased spacing between the trabeculae in the femoral head relative to wildtype controls. Here, we have investigated the role of TIEG1 in osteoclasts to further determine their potential role in mediating this phenotype. We have found that TIEG1−/− osteoclast precursors differentiated more slowly compared to wildtype precursors in vitro and high RANKL doses are able to overcome this defect. We also discovered that TIEG1−/− precursors exhibit defective RANKL-induced phosphorylation and accumulation of NFATc1 and the NFATc1 target gene DC-STAMP. Higher RANKL concentrations reversed defective NFATc1 signaling and restored differentiation. After differentiation, wildtype osteoclasts underwent apoptosis more quickly than TIEG1−/− osteoclasts. We observed increased AKT and MEK/ERK signaling pathway activation in TIEG1−/− osteoclasts, consistent with the roles of these kinases in promoting osteoclast survival. Adenoviral delivery of TIEG1 (AdTIEG1) to TIEG1−/− cells reversed the RANKL-induced NFATc1 signaling defect in TIEG1−/− precursors and eliminated the differentiation and apoptosis defects. Suppression of TIEG1 with siRNA in wildtype cells reduced differentiation and NFATc1 activation. Together, these data provide evidence that TIEG1 controls osteoclast differentiation by reducing NFATc1 pathway activation and reduces osteoclast survival by suppressing AKT and MEK/ERK signaling
The progestational and androgenic properties of medroxyprogesterone acetate: gene regulatory overlap with dihydrotestosterone in breast cancer cells
INTRODUCTION: Medroxyprogesterone acetate (MPA), the major progestin used for oral contraception and hormone replacement therapy, has been implicated in increased breast cancer risk. Is this risk due to its progestational or androgenic properties? To address this, we assessed the transcriptional effects of MPA as compared with those of progesterone and dihydrotestosterone (DHT) in human breast cancer cells. METHOD: A new progesterone receptor-negative, androgen receptor-positive human breast cancer cell line, designated Y-AR, was engineered and characterized. Transcription assays using a synthetic promoter/reporter construct, as well as endogenous gene expression profiling comparing progesterone, MPA and DHT, were performed in cells either lacking or containing progesterone receptor and/or androgen receptor. RESULTS: In progesterone receptor-positive cells, MPA was found to be an effective progestin through both progesterone receptor isoforms in transient transcription assays. Interestingly, DHT signaled through progesterone receptor type B. Expression profiling of endogenous progesterone receptor-regulated genes comparing progesterone and MPA suggested that although MPA may be a somewhat more potent progestin than progesterone, it is qualitatively similar to progesterone. To address effects of MPA through androgen receptor, expression profiling was performed comparing progesterone, MPA and DHT using Y-AR cells. These studies showed extensive gene regulatory overlap between DHT and MPA through androgen receptor and none with progesterone. Interestingly, there was no difference between pharmacological MPA and physiological MPA, suggesting that high-dose therapeutic MPA may be superfluous. CONCLUSION: Our comparison of the gene regulatory profiles of MPA and progesterone suggests that, for physiologic hormone replacement therapy, the actions of MPA do not mimic those of endogenous progesterone alone. Clinically, the complex pharmacology of MPA not only influences its side-effect profile; but it is also possible that the increased breast cancer risk and/or the therapeutic efficacy of MPA in cancer treatment is in part mediated by androgen receptor
Estrogen receptor transcription and transactivation: Basic aspects of estrogen action
Estrogen signaling has turned out to be much more complex and exciting than previously thought; the paradigm shift in our understanding of estrogen action came in 1996, when the presence of a new estrogen receptor (ER), ERβ, was reported. An intricate interplay between the classical ERα and the novel ERβ is of paramount importance for the final biological effect of estrogen in different target cells
An efficient approach for the assembly of mass and stiffness matrices of structures with modifications
The finite element method is one of the most common tools for the comprehensive analysis of structures with applications reaching from static, often nonlinear stress–strain, to transient dynamic analyses. For single calculations the expense to generate an appropriate mesh is often insignificant compared to the analysis time even for complex geometries and therefore negligible. However, this is not the case for certain other applications, most notably structural optimization procedures, where the (re-)meshing effort is very important with respect to the total runtime of the procedure. Thus it is desirable to find methods to efficiently generate mass and stiffness matrices allowing to reduce this effort, especially for structures with modifications of minor complexity, e.g. panels with cutouts.
Therefore, a modeling approach referred to as Energy Modification Method is proposed in this paper. The underlying idea is to model and discretize the basis structure, e.g. a plate, and the modifications, e.g. holes, separately. The discretized energy expressions of the modifications are then subtracted from (or added to) the energy expressions of the basis structure and the coordinates are related to each other by kinematical constraints leading to the mass and stiffness matrices of the complete structure. This approach will be demonstrated by two simple examples, a rod with varying material properties and a rectangular plate with a rectangular or circular hole, using a finite element discretization as basis. Convergence studies of the method based on the latter example follow demonstrating the rapid convergence and efficiency of the method. Finally, the Energy Modification Method is successfully used in the structural optimization of a circular plate with holes, with the objective to split all its double eigenfrequencies
- …