1,142 research outputs found

    Kinks in dipole chains

    Full text link
    It is shown that the topological discrete sine-Gordon system introduced by Speight and Ward models the dynamics of an infinite uniform chain of electric dipoles constrained to rotate in a plane containing the chain. Such a chain admits a novel type of static kink solution which may occupy any position relative to the spatial lattice and experiences no Peierls-Nabarro barrier. Consequently the dynamics of a single kink is highly continuum like, despite the strongly discrete nature of the model. Static multikinks and kink-antikink pairs are constructed, and it is shown that all such static solutions are unstable. Exact propagating kinks are sought numerically using the pseudo-spectral method, but it is found that none exist, except, perhaps, at very low speed.Comment: Published version. 21 pages, 5 figures. Section 3 completely re-written. Conclusions unchange

    Magnetic bubble refraction and quasibreathers in inhomogeneous antiferromagnets

    Full text link
    The dynamics of magnetic bubble solitons in a two-dimensional isotropic antiferromagnetic spin lattice is studied, in the case where the exchange integral J(x,y) is position dependent. In the near continuum regime, this system is described by the relativistic O(3) sigma model on a spacetime with a spatially inhomogeneous metric, determined by J. The geodesic approximation is used to describe low energy soliton dynamics in this system: n-soliton motion is approximated by geodesic motion in the moduli space of static n-solitons, equipped with the L^2 metric. Explicit formulae for this metric for various natural choices of J(x,y) are obtained. From these it is shown that single soliton trajectories experience refraction, with 1/J analogous to the refractive index, and that this refraction effect allows the construction of simple bubble lenses and bubble guides. The case where J has a disk inhomogeneity (taking the value J_1 outside a disk, and J_2<J_1 inside) is considered in detail. It is argued that, for sufficiently large J_1/J_2 this type of antiferromagnet supports approximate quasibreathers: two or more coincident bubbles confined within the disk which spin internally while their shape undergoes periodic oscillations with a generically incommensurate period.Comment: Conference proceedings paper for talk given at Nonlinear Physics Theory and Experiment IV, Gallipoli, Italy, June 200

    The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps

    Get PDF
    The most fruitful approach to studying low energy soliton dynamics in field theories of Bogomol'nyi type is the geodesic approximation of Manton. In the case of vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this approximation, and hence proved that it is valid in the low speed regime. His method employs energy estimates which rely on a key coercivity property of the Hessian of the energy functional of the theory under consideration. In this paper we prove an analogous coercivity property for the Hessian of the energy functional of a general sigma model with compact K\"ahler domain and target. We go on to prove a continuity property for our result, and show that, for the CP^1 model on S^2, the Hessian fails to be globally coercive in the degree 1 sector. We present numerical evidence which suggests that the Hessian is globally coercive in a certain equivariance class of the degree n sector for n>1. We also prove that, within the geodesic approximation, a single CP^1 lump moving on S^2 does not generically travel on a great circle.Comment: 29 pages, 1 figure; typos corrected, references added, expanded discussion of the main function spac

    Quantum lump dynamics on the two-sphere

    Get PDF
    It is well known that the low-energy classical dynamics of solitons of Bogomol'nyi type is well approximated by geodesic motion in M_n, the moduli space of static n-solitons. There is an obvious quantization of this dynamics wherein the wavefunction evolves according to the Hamiltonian H_0 equal to (half) the Laplacian on M_n. Born-Oppenheimer reduction of analogous mechanical systems suggests, however, that this simple Hamiltonian should receive corrections including k, the scalar curvature of M_n, and C, the n-soliton Casimir energy, which are usually difficult to compute, and whose effect on the energy spectrum is unknown. This paper analyzes the spectra of H_0 and two corrections to it suggested by work of Moss and Shiiki, namely H_1=H_0+k/4 and H_2=H_1+C, in the simple but nontrivial case of a single CP^1 lump moving on the two-sphere. Here M_1=TSO(3), a noncompact kaehler 6-manifold invariant under an SO(3)xSO(3) action, whose geometry is well understood. The symmetry gives rise to two conserved angular momenta, spin and isospin. A hidden isometry of M_1 is found which implies that all three energy spectra are symmetric under spin-isospin interchange. The Casimir energy is found exactly on the zero section of TSO(3), and approximated numerically on the rest of M_1. The lowest 19 eigenvalues of H_i are found for i=0,1,2, and their spin-isospin and parity compared. The curvature corrections in H_1 lead to a qualitatively unchanged low-level spectrum while the Casimir energy in H_2 leads to significant changes. The scaling behaviour of the spectra under changes in the radii of the domain and target spheres is analyzed, and it is found that the disparity between the spectra of H_1 and H_2 is reduced when the target sphere is made smaller.Comment: 35 pages, 3 figure

    Integrability of Differential-Difference Equations with Discrete Kinks

    Full text link
    In this article we discuss a series of models introduced by Barashenkov, Oxtoby and Pelinovsky to describe some discrete approximations to the \phi^4 theory which preserve travelling kink solutions. We show, by applying the multiple scale test that they have some integrability properties as they pass the A_1 and A_2 conditions. However they are not integrable as they fail the A_3 conditions.Comment: submitted to the Proceedings of the workshop "Nonlinear Physics: Theory and Experiment.VI" in a special issue di Theoretical and Mathematical Physic

    Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential

    Get PDF
    For the nonlinear Klein-Gordon type models, we describe a general method of discretization in which the static kink can be placed anywhere with respect to the lattice. These discrete models are therefore free of the {\it static} Peierls-Nabarro potential. Previously reported models of this type are shown to belong to a wider class of models derived by means of the proposed method. A relevant physical consequence of our findings is the existence of a wide class of discrete Klein-Gordon models where slow kinks {\it practically} do not experience the action of the Peierls-Nabarro potential. Such kinks are not trapped by the lattice and they can be accelerated by even weak external fields.Comment: 6 pages, 2 figure

    Breathers in the weakly coupled topological discrete sine-Gordon system

    Get PDF
    Existence of breather (spatially localized, time periodic, oscillatory) solutions of the topological discrete sine-Gordon (TDSG) system, in the regime of weak coupling, is proved. The novelty of this result is that, unlike the systems previously considered in studies of discrete breathers, the TDSG system does not decouple into independent oscillator units in the weak coupling limit. The results of a systematic numerical study of these breathers are presented, including breather initial profiles and a portrait of their domain of existence in the frequency-coupling parameter space. It is found that the breathers are uniformly qualitatively different from those found in conventional spatially discrete systems.Comment: 19 pages, 4 figures. Section 4 (numerical analysis) completely rewritte
    • …
    corecore