163 research outputs found
The Wasteland of Random Supergravities
We show that in a general \cal{N} = 1 supergravity with N \gg 1 scalar
fields, an exponentially small fraction of the de Sitter critical points are
metastable vacua. Taking the superpotential and Kahler potential to be random
functions, we construct a random matrix model for the Hessian matrix, which is
well-approximated by the sum of a Wigner matrix and two Wishart matrices. We
compute the eigenvalue spectrum analytically from the free convolution of the
constituent spectra and find that in typical configurations, a significant
fraction of the eigenvalues are negative. Building on the Tracy-Widom law
governing fluctuations of extreme eigenvalues, we determine the probability P
of a large fluctuation in which all the eigenvalues become positive. Strong
eigenvalue repulsion makes this extremely unlikely: we find P \propto exp(-c
N^p), with c, p being constants. For generic critical points we find p \approx
1.5, while for approximately-supersymmetric critical points, p \approx 1.3. Our
results have significant implications for the counting of de Sitter vacua in
string theory, but the number of vacua remains vast.Comment: 39 pages, 9 figures; v2: fixed typos, added refs and clarification
Association of specific chromosome alterations with tumour phenotype in posterior uveal melanoma
Posterior uveal melanomas have recurrent alterations of chromosomes 1, 3, 6 and 8. In particular, changes of chromosomes 3 and 8 occur in association, appear to characterize those tumours with a ciliary body component, and have been shown to be of prognostic significance. The relevance of other chromosome alterations is less certain. We have performed cytogenetic analysis on 42 previously untreated primary posterior uveal melanomas. Of interest was the observation that as tumour size increased the involvement of specific chromosome changes, and the amount of chromosome abnormalities likewise increased. Loss, or partial deletions, of the short arm of chromosome 1 were found to associate with larger ciliary body melanomas; typically, loss of the short arm resulted from unbalanced translocations, the partners of which varied. Trisomy of chromosome 21 occurred more often in ciliary body melanomas, whilst rearrangements of chromosomes 6 and 11 were primarily related to choroidal melanomas. Our results imply that alterations of chromosome 1 are important in the progression of some uveal melanomas, and that other chromosome abnormalities, besides those of chromosomes 3 and 8, are associated with ocular tumours of particular locations. © 2000 Cancer Research Campaig
Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples
<p>Abstract</p> <p>Background</p> <p>Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.</p> <p>Findings</p> <p>The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.</p> <p>Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.</p> <p>Conclusions</p> <p>We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.</p
Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data
BACKGROUND: Chromosomal abnormalities have been associated with most human malignancies, with gains and losses on some genomic regions associated with particular entities. METHODS: Of the 15429 cases collected for the Progenetix molecular-cytogenetic database, 5918 malignant epithelial neoplasias analyzed by chromosomal Comparative Genomic Hybridization (CGH) were selected for further evaluation. For the 22 clinico-pathological entities with more than 50 cases, summary profiles for genomic imbalances were generated from case specific data and analyzed. RESULTS: With large variation in overall genomic instability, recurring genomic gains and losses were prominent. Most entities showed frequent gains involving 8q2, while gains on 20q, 1q, 3q, 5p, 7q and 17q were frequent in different entities. Loss "hot spots" included 3p, 4q, 13q, 17p and 18q among others. Related average imbalance patterns were found for clinically distinct entities, e.g. hepatocellular carcinomas (ca.) and ductal breast ca., as well as for histologically related entities (squamous cell ca. of different sites). CONCLUSION: Although considerable case-by-case variation of genomic profiles can be found by CGH in epithelial malignancies, a limited set of variously combined chromosomal imbalances may be typical for carcinogenesis. Focus on the respective regions should aid in target gene detection and pathway deduction
Comparative chromosome painting discloses homologous Segments in distantly related mammals
Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow
sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the
presence of syntenic groups in distantly related mammalian Orders ranging from
primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus
muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These
mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude
that ZOO-FISH can be used to generate comparative chromosome maps of a large
number of mammalian species
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
Multicolor Combinatorial Probe Coding for Real-Time PCR
The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed “Multicolor Combinatorial Probe Coding” (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2n-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy
Evidence for an ependymoma tumour suppressor gene in chromosome region 22pter–22q11.2
Ependymomas are glial tumours of the brain and spinal cord. The most frequent genetic change in sporadic ependymoma is monosomy 22, suggesting the presence of an ependymoma tumour suppressor gene on that chromosome. Clustering of ependymomas has been reported to occur in some families. From an earlier study in a family in which four cousins developed an ependymoma, we concluded that an ependymoma-susceptibility gene, which is not the NF2 gene in 22q12, might be located on chromosome 22. To localize that gene, we performed a segregation analysis with chromosome 22 markers in this family. This analysis revealed that the susceptibility gene may be located proximal to marker D22S941 in 22pter–22q11.2. Comparative genomic hybridization showed that monosomy 22 was the sole detectable genetic aberration in the tumour of one of the patients. Loss of heterozygosity studies in that tumour revealed that, in accordance to Knudson’s two-hit theory of tumorigenesis, the lost chromosome 22 originated from the parent presumed to have contributed the wild-type allele of the susceptibility gene. Thus, our segregation and tumour studies collectively indicate that an ependymoma tumour suppressor gene may be present in region 22pter–22q11.2. © 1999 Cancer Research Campaig
Genomic imbalances in esophageal squamous cell carcinoma identified by molecular cytogenetic techniques
This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated
- …