18 research outputs found

    Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle

    Get PDF
    XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics

    Dynamic stability of coral reefs on the West Australian coast

    Get PDF
    Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10-35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∌28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs
    corecore