248 research outputs found

    Does recovery from submaximal exercise predict response to cardiac resynchronisation therapy?

    Get PDF
    BACKGROUND: Exercise parameters are not routinely incorporated in decision making for cardiac resynchronisation therapy (CRT). Submaximal exercise parameters better reflect daily functional capacity of heart failure patients than parameters measured at maximal exertion, and may therefore better predict response to CRT. We compared various exercise parameters, and sought to establish which best predict CRT response. METHODS: In 31 patients with chronic heart failure (61% male; age 68±7 years), submaximal and maximal cycling testing was performed before and 3 months after CRT. Submaximal oxygen onset (τVO(2) onset) and recovery kinetics (τVO(2) recovery), peak oxygen uptake (VO(2) peak) and oxygen uptake efficiency slope (OUES) where measured. Response was defined as ≥15% relative reduction in end-systolic volume. RESULTS: After controlling for age, New York Heart Association and VO(2) peak, fast submaximal VO(2) kinetics were significantly associated with response to CRT, measured either during onset or recovery of submaximal exercise (area under the curve, AUC=0.719 for both; p<0.05). By contrast, VO(2) peak (AUC=0.632; p=0.199) and OUES (AUC=0.577; p=0.469) were not associated with response. Among patients with fast onset and recovery kinetics, below 60 s, a significantly higher percentage of responders was observed (91% and 92% vs 43% and 40%, respectively). CONCLUSIONS: Impaired VO(2) kinetics may serve as an objective marker of submaximal exercise capacity that is age-independently associated with non-response following CRT, whereas maximal exercise parameters are not. Assessment of VO(2) kinetics is feasible and easy to perform, but larger studies should confirm their clinical utility

    The establishment and characterization of the first canine hepatocellular carcinoma cell line, which resembles human oncogenic expression patterns

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most worldwide frequent primary carcinomas resulting in the death of many cirrhotic patients. Unfortunately, the molecular mechanisms of this cancer are not well understood; therefore, we need a good model system to study HCC. The dog is recognized as a promising model for human medical research, namely compared with rodents. The objective of this study was to establish and characterize a spontaneous canine tumor cell line as a potential model for studies on HCC. RESULTS: Histomorphological, biochemical, molecular biological and quantitative assays were performed to characterize the canine HCC cell line that originated from a dog with a spontaneous liver tumor. Morphological investigations provided strong evidence for the hepatocytic and neoplastic nature of the cell line, while biochemical assays showed that they produced liver-specific enzymes. PCR analysis confirmed expression of ceruloplasmin, alpha-fetoprotein and serum albumin. Quantitative RT-PCR showed that the canine HCC cell line resembles human HCC based on the measurements of expression profiles of genes involved in cell proliferation and apoptosis. CONCLUSIONS: We have developed a novel, spontaneous tumor liver cell line of canine origin that has many characteristics of human HCC. Therefore, the canine HCC cell line might be an excellent model for comparative studies on the molecular pathogenesis of HCC

    The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism

    Get PDF
    Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient-own liver-derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient-derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient-derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched-chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient-specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process

    Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling of Hepatic Steatosis

    Get PDF
    Hepatic steatosis is a highly prevalent liver disease, yet research is hampered by the lack of tractable cellular and animal models. Steatosis also occurs in cats, where it can cause severe hepatic failure. Previous studies demonstrate the potential of liver organoids for modeling genetic diseases. To examine the possibility of using organoids to model steatosis, we established a long-term feline liver organoid culture with adult liver stem cell characteristics and differentiation potential toward hepatocyte-like cells. Next, organoids from mouse, human, dog

    Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease

    Get PDF
    During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during chronic liver injury is promoted
    corecore