32 research outputs found

    Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting

    Get PDF
    Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework

    A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: The Treat-OA consortium

    Get PDF
    To identify the susceptibility gene in hand osteoarthritis (OA) the authors used a two-stage approach genomewide association study using two discovery samples (the TwinsUK cohort and the Rotterdam discovery subset; a total of 1804 subjects) and four replication samples (the Chingford Study, the Chuvasha Skeletal Aging Study, the Rotterdam replication subset and the Genetics, Arthrosis, and Progression (GARP) Study; a total of 3266 people). Five single-nucleotide polymorphisms (SNPs) had a likelihood of association with hand OA in the discovery stage and one of them (rs716508), was successfully confirmed in the replication stage (meta-analysis p = 1.81×10-5). The C allele conferred a reduced risk of 33% to 41% using a case-control definition. The SNP is located in intron 1 of the A2BP1 gene. This study also found that the same allele of the SNP significantly reduced bone density at both the hip and spine (p<0.01), suggesting the potential mechanism of the gene in hand OA might be via effects on subchondral bone. The authors' findings provide a potential new insight into genetic mechanisms in the development of hand OA

    Genetics of skin color variation in Europeans: genome-wide association studies with functional follow-up

    Get PDF
    In the International Visible Trait Genetics (VisiGen) Consortium, we investigated the genetics of human skin color by combining a series of genome-wide association studies (GWAS) in a total of 17,262 Europeans with functional follow-up of discovered loci. Our GWAS provide the first genome-wide significant evidence for chromosome 20q11.22 harboring the ASIP gene being explicitly associated with skin color in Europeans. In addition, genomic loci at 5p13.2 (SLC45A2), 6p25.3 (IRF4), 15q13.1 (HERC2/OCA2), and 16q24.3 (MC1R) were confirmed to be involved in skin coloration in Europeans. In follow-up gene expression and regulation studies of 22 genes in 20q11.22, we highlighted two novel genes EIF2S2 and GSS, serving as competing functional candidates in this region and providing future research lines. A genetically inferred skin color score obtained from the 9 top-associated SNPs from 9 genes in 940 worldwide samples (HGDP-CEPH) showed a clear gradual pattern in Western Eurasians similar to the distribution of physical skin color, suggesting the used 9 SNPs as suitable markers for DNA prediction of skin color in Europeans and neighboring populations, relevant in future forensic and anthropological investigations

    Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero

    Get PDF
    The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sexspecific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N=15 661, with replication N=75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (b=0.06; P=0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population

    Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis

    Get PDF
    Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10−8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs49654

    The Molecular Genetic Architecture of Self-Employment

    Get PDF
    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable-entrepreneurship-that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg2/σP2= 25%, h2= 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10-5were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases
    corecore