555 research outputs found
Directly Interacting Massless Particles - a Twistor Approach
Twistor phase spaces are used to provide a general description of the
dynamics of a finite number of directly interacting massless spinning particles
forming a closed relativistic massive and spinning system with an internal
structure. A Poincare invariant canonical quantization of the so obtained
twistor phase space dynamics is performed.Comment: LaTeX, approx. 16 pages; to appear in Journal of Mathematical
Physics, March or April 1996 issu
Negative forms and path space forms
We present an account of negative differential forms within a natural
algebraic framework of differential graded algebras, and explain their
relationship with forms on path spaces.Comment: 12 pp.; the Introduction has been rewritten and mention of cohomology
dropped in Proposition 3.2; material slightly reorganize
Twistors, special relativity, conformal symmetry and minimal coupling - a review
An approach to special relativistic dynamics using the language of spinors
and twistors is presented. Exploiting the natural conformally invariant
symplectic structure of the twistor space, a model is constructed which
describes a relativistic massive, spinning and charged particle, minimally
coupled to an external electro-magnetic field. On the two-twistor phase space
the relativistic Hamiltonian dynamics is generated by a Poincare scalar
function obtained from the classical limit (appropriately defined by us) of the
second order, to an external electro-magnetic field minimally coupled, Dirac
operator. In the so defined relativistic classical limit there are no Grassman
variables. Besides, the arising equation that describes dynamics of the
relativistic spin differs significantly from the so called Thomas Bergman
Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything
else in the papper) on page 23 delete
Application of Discrete Differential Forms to Spherically Symmetric Systems in General Relativity
In this article we describe applications of Discrete Differential Forms in
computational GR. In particular we consider the initial value problem in vacuum
space-times that are spherically symmetric. The motivation to investigate this
method is mainly its manifest coordinate independence. Three numerical schemes
are introduced, the results of which are compared with the corresponding
analytic solutions. The error of two schemes converges quadratically to zero.
For one scheme the errors depend strongly on the initial data.Comment: 22 pages, 6 figures, accepted by Class. Quant. Gra
3-dimensional Cauchy-Riemann structures and 2nd order ordinary differential equations
The equivalence problem for second order ODEs given modulo point
transformations is solved in full analogy with the equivalence problem of
nondegenerate 3-dimensional CR structures. This approach enables an analog of
the Feffereman metrics to be defined. The conformal class of these (split
signature) metrics is well defined by each point equivalence class of second
order ODEs. Its conformal curvature is interpreted in terms of the basic point
invariants of the corresponding class of ODEs
Covariance properties and regularization of conserved currents in tetrad gravity
We discuss the properties of the gravitational energy-momentum 3-form within
the tetrad formulation of general relativity theory. We derive the covariance
properties of the quantities describing the energy-momentum content under
Lorentz transformations of the tetrad. As an application, we consider the
computation of the total energy (mass) of some exact solutions of Einstein's
general relativity theory which describe compact sources with asymptotically
flat spacetime geometry. As it is known, depending on the choice of tetrad
frame, the formal total integral for such configurations may diverge. We
propose a natural regularization method which yields finite values for the
total energy-momentum of the system and demonstrate how it works on a number of
explicit examples.Comment: 36 pages, Revtex, no figures; small changes, published versio
On certain quasi-local spin-angular momentum expressions for small spheres
The Ludvigsen-Vickers and two recently suggested quasi-local spin-angular
momentum expressions, based on holomorphic and anti-holomorphic spinor fields,
are calculated for small spheres of radius about a point . It is shown
that, apart from the sign in the case of anti-holomorphic spinors in
non-vacuum, the leading terms of all these expressions coincide. In non-vacuum
spacetimes this common leading term is of order , and it is the product of
the contraction of the energy-momentum tensor and an average of the approximate
boost-rotation Killing vector that vanishes at and of the 3-volume of the
ball of radius . In vacuum spacetimes the leading term is of order ,
and the factor of proportionality is the contraction of the Bel-Robinson tensor
and an other average of the same approximate boost-rotation Killing vector.Comment: 16 pages, Plain Te
- …