920 research outputs found

    Parametric instabilities in magnetized multicomponent plasmas

    Full text link
    This paper investigates the excitation of various natural modes in a magnetized bi-ion or dusty plasma. The excitation is provided by parametrically pumping the magnetic field. Here two ion-like species are allowed to be fully mobile. This generalizes our previous work where the second heavy species was taken to be stationary. Their collection of charge from the background neutral plasma modifies the dispersion properties of the pump and excited waves. The introduction of an extra mobile species adds extra modes to both these types of waves. We firstly investigate the pump wave in detail, in the case where the background magnetic field is perpendicular to the direction of propagation of the pump wave. Then we derive the dispersion equation relating the pump to the excited wave for modes propagating parallel to the background magnetic field. It is found that there are a total of twelve resonant interactions allowed, whose various growth rates are calculated and discussed.Comment: Published in May 2004; this is a late submission to the archive. 14 pages, 8 figure

    Genetic parameters, heterosis, and breed effects for body condition score and mature cow weight in beef cattle

    Get PDF
    Understanding the genetic relationship between mature cow weight (MWT) and body condition score (BCS) is useful to implement selection programs focused on cow efficiency. The objectives of this study were to estimate genetic parameters, heterosis, and breed effects for MWT and BCS. In total, 25,035 and 24,522 overlapping records were available for MWT and BCS on 6,138 and 6,131 cows, respectively, from the Germplasm Evaluation program, a crossbred beef population at the U.S. Meat Animal Research Center. Pedigree was available for 48,013 individuals. Univariate animal models were used to estimate heritabilities for each trait by parity. Bivariate animal models were used to estimate genetic correlations between parities within a trait and between traits within parities. Bivariate repeatability animal models were used to estimate genetic correlations between traits across parities. Estimates of heritability for different parities ranged from 0.43 ± 0.05 to 0.55 ± 0.07 for MWT and from 0.12 ± 0.03 to 0.25 ± 0.04 for BCS and were lower with the repeatability model at 0.40 ± 0.02 and 0.11 ± 0.01 for MWT and BCS, respectively. Estimates of repeatability were high for MWT (0.67 ± 0.005) and low for BCS (0.22 ± 0.006). Estimates of genetic correlation for MWT and BCS between parities were, in general, high, especially between consecutive parities. Estimates of genetic correlation between MWT and BCS were positive and moderate, ranging from 0.32 ± 0.09 to 0.68 ± 0.14. The direct heterosis estimates were 21.56 ± 3.53 kg (P ≤ 0.001) for MWT and 0.095 ± 0.034 (P ≤ 0.001) for BCS. Ordered by decreasing MWT, the breeds ranked Brahman, Charolais, Angus, Simmental, Salers, Hereford, Santa Gertrudis, Chiangus, Brangus, Red Angus, Shorthorn, Maine-Anjou, Gelbvieh, Beefmaster, Limousin, and Braunvieh. Ordered by decreasing BCS, the breeds ranked Brahman, Red Angus, Charolais, Angus, Hereford, Brangus, Beefmaster, Chiangus, Salers, Simmental, Maine-Anjou, Limousin, Santa Gertrudis, Shorthorn, Gelbvieh, and Braunvieh. Estimates of breed differences for MWT were also adjusted for BCS (AMWT), and in general, AMWT depicted smaller differences between breeds with some degree of re-ranking (r = 0.59). These results suggest that MWT and BCS are at least moderately genetically correlated and that they would respond favorably to selection. Estimates of breed differences and heterotic effects could be used to parameterize multibreed genetic evaluations for indicators of cow maintenance energy requirements

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    The Galactic Distribution of Large HI Shells

    Full text link
    We report the discovery of nineteen new HI shells in the Southern Galactic Plane Survey (SGPS). These shells, which range in radius from 40 pc to 1 kpc, were found in the low resolution Parkes portion of the SGPS dataset, covering Galactic longitudes l=253 deg to l=358 deg. Here we give the properties of individual shells, including positions, physical dimensions, energetics, masses, and possible associations. We also examine the distribution of these shells in the Milky Way and find that several of the shells are located between the spiral arms of the Galaxy. We offer possible explanations for this effect, in particular that the density gradient away from spiral arms, combined with the many generations of sequential star formation required to create large shells, could lead to a preferential placement of shells on the trailing edges of spiral arms. Spiral density wave theory is used in order to derive the magnitude of the density gradient behind spiral arms. We find that the density gradient away from spiral arms is comparable to that out of the Galactic plane and therefore suggest that this may lead to exaggerated shell expansion away from spiral arms and into interarm regions.Comment: 25 pages, 20 embedded EPS figures, uses emulateapj.sty, to appear in the Astrophysical Journa

    The spectra and energies of classical double radio lobes

    Get PDF
    We compare two temporal properties of classical double radio sources: i) radiative lifetimes of synchrotron-emitting particles and ii) dynamical source ages. We discuss how these can be quite discrepant from one another, rendering use of the traditional spectral ageing method inappropriate: we contend that spectral ages give meaningful estimates of dynamical ages only when these ages are << 10^7 years. In juxtaposing the fleeting radiative lifetimes with source ages which are significantly longer, a refinement of the paradigm for radio source evolution is required. The changing spectra along lobes are explained, not predominantly by synchrotron ageing but, by gentle gradients in a magnetic field mediated by a low-gamma matrix which illuminates an energy-distribution of particles, controlled largely by classical synchrotron loss in the high magnetic field of the hotspot. The energy in the particles is an order of magnitude higher than that inferred from the minimum-energy estimate, implying that the jet-power is of the same order as the accretion luminosity produced by the quasar central engine. This refined paradigm points to a resolution of the findings of Rudnick et al (1994) and Katz-Stone & Rudnick (1994) that both the Jaffe-Perola and Kardashev-Pacholczyk model spectra are invariably poor descriptions of the curved spectral shape of lobe emission, and indeed that for Cygnus A all regions of the lobes are characterised by a `universal spectrum'. [abridged]Comment: LaTeX, 4 figures. To appear in A

    Intra-Individual Variability in Vagal Control Is Associated With Response Inhibition Under Stress

    Get PDF
    Dynamic intra-individual variability (IIV) in cardiac vagal control across multiple situations is believed to contribute to adaptive cognition under stress; however, a dearth of research has empirically tested this notion. To this end, we examined 25 U.S. Army Soldiers (all male, mean age = 30.73, standard deviation (SD) = 7.71) whose high-frequency heart rate variability (HF-HRV) was measured during a resting baseline and during three conditions of a shooting task (training, low stress, high stress). Response inhibition was measured as the correct rejection (CR) of friendly targets during the low and high stress conditions. We tested the association between the SD of HF-HRV across all four task conditions (IIV in vagal control) and changes in response inhibition between low and high stress. Greater differences in vagal control between conditions (larger IIV) were associated with higher tonic vagal control during rest, and stronger stress-related decreases in response inhibition. These results suggest that flexibility in vagal control is supported by tonic vagal control, but this flexibility also uniquely relates to adaptive cognition under stress. Findings are consistent with neurobehavioral and dynamical systems theories of vagal function

    H.E.S.S. observations of gamma-ray bursts in 2003-2007

    Full text link
    Very-high-energy (VHE; >~100 GeV) gamma-rays are expected from gamma-ray bursts (GRBs) in some scenarios. Exploring this photon energy regime is necessary for understanding the energetics and properties of GRBs. GRBs have been one of the prime targets for the H.E.S.S. experiment, which makes use of four Imaging Atmospheric Cherenkov Telescopes (IACTs) to detect VHE gamma-rays. Dedicated observations of 32 GRB positions were made in the years 2003-2007 and a search for VHE gamma-ray counterparts of these GRBs was made. Depending on the visibility and observing conditions, the observations mostly start minutes to hours after the burst and typically last two hours. Results from observations of 22 GRB positions are presented and evidence of a VHE signal was found neither in observations of any individual GRBs, nor from stacking data from subsets of GRBs with higher expected VHE flux according to a model-independent ranking scheme. Upper limits for the VHE gamma-ray flux from the GRB positions were derived. For those GRBs with measured redshifts, differential upper limits at the energy threshold after correcting for absorption due to extra-galactic background light are also presented.Comment: 9 pages, 4 tables, 3 figure
    corecore