1,447 research outputs found
t-J model then and now: A personal perspective from the pioneering times
In this overview I sketch briefly the path to the so-called {\em t-J model}
derived for the first time 30 years ago and provide its original meaning within
the theory of strongly correlated magnetic metals with a non-Fermi (non-Landau)
liquid ground state. An emergence of the concept of {\em real space pairing},
is discussed in a historical prospective. A generalization of this model to the
many-orbital situation is briefly discussed. The emphasis is put on didactical
exposition of ideas, as they were transformed into mathematical language. The
concept of {\em hybrid pairing} is introduced in the same context at the end.Comment: 14 pages without figures, lecture presented at the XII National
School "Correlated Electrons Systems Then and Now", Ustron, Poland (September
2006
Negative weights make adversaries stronger
The quantum adversary method is one of the most successful techniques for
proving lower bounds on quantum query complexity. It gives optimal lower bounds
for many problems, has application to classical complexity in formula size
lower bounds, and is versatile with equivalent formulations in terms of weight
schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on
the principle that if an algorithm successfully computes a function then, in
particular, it is able to distinguish between inputs which map to different
values.
We present a stronger version of the adversary method which goes beyond this
principle to make explicit use of the stronger condition that the algorithm
actually computes the function. This new method, which we call ADV+-, has all
the advantages of the old: it is a lower bound on bounded-error quantum query
complexity, its square is a lower bound on formula size, and it behaves well
with respect to function composition. Moreover ADV+- is always at least as
large as the adversary method ADV, and we show an example of a monotone
function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing
that ADV+- does not face limitations of ADV like the certificate complexity
barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean
functions, simplified examples, added matching upper bound for AD
A New Quantum Lower Bound Method, with Applications to Direct Product Theorems and Time-Space Tradeoffs
We give a new version of the adversary method for proving lower bounds on
quantum query algorithms. The new method is based on analyzing the eigenspace
structure of the problem at hand. We use it to prove a new and optimal strong
direct product theorem for 2-sided error quantum algorithms computing k
independent instances of a symmetric Boolean function: if the algorithm uses
significantly less than k times the number of queries needed for one instance
of the function, then its success probability is exponentially small in k. We
also use the polynomial method to prove a direct product theorem for 1-sided
error algorithms for k threshold functions with a stronger bound on the success
probability. Finally, we present a quantum algorithm for evaluating solutions
to systems of linear inequalities, and use our direct product theorems to show
that the time-space tradeoff of this algorithm is close to optimal.Comment: 16 pages LaTeX. Version 2: title changed, proofs significantly
cleaned up and made selfcontained. This version to appear in the proceedings
of the STOC 06 conferenc
Lower Bounds on Quantum Query Complexity
Shor's and Grover's famous quantum algorithms for factoring and searching
show that quantum computers can solve certain computational problems
significantly faster than any classical computer. We discuss here what quantum
computers_cannot_ do, and specifically how to prove limits on their
computational power. We cover the main known techniques for proving lower
bounds, and exemplify and compare the methods.Comment: survey, 23 page
- …
