64 research outputs found

    Semiflexible Polymer Confined to a Spherical Surface

    Get PDF
    We develop a formalism for describing the kinematics of a wormlike chain confined to the surface of a sphere that simultaneously satisfies the spherical confinement and the inextensibility of the chain contour. We use this formalism to study the statistical behavior of the wormlike chain on a spherical surface. In particular, we provide an exact, closed-form expression for the mean square end-to-end distance that is valid for any value of chain length L, persistence length lp, and sphere radius R. We predict two qualitatively different behaviors for a long polymer depending on the ratio R/lp. For R/lp>4, the mean square end-to-end distance increases monotonically with the chain length, whereas for R/lp<4, a damped oscillatory behavior is predicted

    Semiflexible polymer solutions. I. Phase behavior and single-chain statistics

    Get PDF
    We study the thermodynamics and single-chain statistics of wormlike polymer solutions with Maier–Saupe-type interactions using self-consistent-field (SCF) theory. The SCF equations are derived using a systematic field-theoretical approach which yields the SCF equations as the lowest order approximation, but permits fluctuation corrections to be incorporated. We solve the SCF equations using the spheroidal functions, which provides a nonperturbative description of the thermodynamics and single-chain statistics in the nematic state for arbitrary degrees of nematic order. Several types of phase diagrams are predicted, with an emphasis on the limit of metastability (spinodal) associated with each phase. The shape and location of these spinodals suggest interesting scenarios for the phase transition kinetics. A large but finite persistence length is shown to significantly decrease the isotropic–nematic transition temperature relative to that for rigid rods. In the nematic state, the mean-square end-to-end distance in the parallel and perpendicular directions are governed by two separate correlation lengths. An exact relationship between these correlation lengths and the eigenvalues of the spheroidal functions is provided, which reproduces the analytical expressions predicted from earlier studies in the limit of large nematic strength. The dominant contribution to the single-chain thermodynamics is shown to arise from small amplitude undulations in the directions perpendicular to the nematic direction; the presence of hairpins, though crucial for determining the dimensions of the polymer, has insignificant consequences on the single-chain thermodynamics

    End-to-end distance vector distribution with fixed end orientations for the wormlike chain model

    Get PDF
    We find exact expressions for the end-to-end distance vector distribution function with fixed end orientations for the wormlike chain model. This function in Fourier-Laplace space adopts the form of infinite continued fractions, which emerges upon exploiting the hierarchical structure of the moment-based expansion. Our results are used to calculate the root-mean-square end displacement in a given direction for a chain with both end orientations fixed. We find that the crossover from rigid to flexible chains is marked by the root-mean-square end displacement slowly losing its angular dependence as the coupling between chain conformation and end orientation wanes. However, the coupling remains strong even for relatively flexible chains, suggesting that the end orientation strongly influences chain conformation for chains that are several persistence lengths long. We then show the behavior of the distribution function by a density plot of the probability as a function of the end-to-end distance vector for a wormlike chain in two dimensions with one end pointed in a fixed direction and the other end free (in its orientation). As we progress from high to low rigidity, the distribution function shifts from being peaked at a location near the full contour length of the chain in the forward direction, corresponding to a straight configuration, to being peaked near zero end separation, as in the Gaussian limit. The function exhibits double peaks in the crossover between these limiting behaviors

    Chromosomal Loci Move Subdiffusively Through a Viscoelastic Cytoplasm

    Get PDF

    Modulation of DNA loop lifetimes by the free energy of loop formation

    Get PDF
    Storage and retrieval of the genetic information in cells is a dynamic process that requires the DNA to undergo dramatic structural rearrangements. DNA looping is a prominent example of such a structural rearrangement that is essential for transcriptional regulation in both prokaryotes and eukaryotes, and the speed of such regulations affects the fitness of individuals. Here, we examine the in vitro looping dynamics of the classic Lac repressor gene-regulatory motif. We show that both loop association and loop dissociation at the DNA-repressor junctions depend on the elastic deformation of the DNA and protein, and that both looping and unlooping rates approximately scale with the looping J factor, which reflects the system's deformation free energy. We explain this observation by transition state theory and model the DNA-protein complex as an effective worm-like chain with twist. We introduce a finite protein-DNA binding interaction length, in competition with the characteristic DNA deformation length scale, as the physical origin of the previously unidentified loop dissociation dynamics observed here, and discuss the robustness of this behavior to perturbations in several polymer parameters

    Target-Site Search of DNA-Binding Proteins

    Get PDF

    Topological constraints in nucleic acid hybridization kinetics

    Get PDF
    A theoretical examination of kinetic mechanisms for forming knots and links in nucleic acid structures suggests that molecules involving base pairs between loops are likely to become topologically trapped in persistent frustrated states through the mechanism of ‘helix-driven wrapping’. Augmentation of the state space to include both secondary structure and topology in describing the free energy landscape illustrates the potential for topological effects to influence the kinetics and function of nucleic acid strands. An experimental study of metastable complementary ‘kissing hairpins’ demonstrates that the topological constraint of zero linking number between the loops effectively prevents conversion to the minimum free energy helical state. Introduction of short catalyst strands that break the topological constraint causes rapid conversion to full duplex
    • …
    corecore