206 research outputs found

    Glucagon-like peptide-1 (GLP-1) and the regulation of human invariant natural killer T cells: lessons from obesity, diabetes and psoriasis

    Get PDF
    Aims/hypothesis The innate immune cells, invariant natural killer T cells (iNKT cells), are implicated in the pathogenesis of psoriasis, an inflammatory condition associated with obesity and other metabolic diseases, such as diabetes and dyslipidaemia. We observed an improvement in psoriasis severity in a patient within days of starting treatment with an incretin-mimetic, glucagon-like peptide-1 (GLP-1) receptor agonist. This was independent of change in glycaemic control. We proposed that this unexpected clinical outcome resulted from a direct effect of GLP-1 on iNKTcells. Methods We measured circulating and psoriatic plaque iNKT cell numbers in two patients with type 2 diabetes and psoriasis before and after commencing GLP-1 analogue therapy. In addition, we investigated the in vitro effects of GLP-1 on iNKT cells and looked for a functional GLP-1 receptor on these cells. Results The Psoriasis Area and Severity Index improved in both patients following 6 weeks of GLP-1 analogue therapy. This was associated with an alteration in iNKT cell number, with an increased number in the circulation and a decreased number in psoriatic plaques. The GLP-1 receptor was expressed on iNKT cells, and GLP-1 induced a dose-dependent inhibition of iNKT cell cytokine secretion, but not cytolytic degranulation in vitro. Conclusions/interpretation The clinical effect observed and the direct interaction between GLP-1 and the immune system raise the possibility of therapeutic applications for GLP-1 in inflammatory conditions such as psoriasis

    X-ray Scattering and O-O Pair-Distribution Functions of Amorphous Ices

    No full text
    The structure factor and oxygen-oxygen pair-distribution functions of amorphous ices at liquid nitrogen temperature (T = 77 K) have been derived from wide-angle X-ray scattering (WAXS) up to interatomic distances of r = 23 Å, where local structure differences between the amorphous ices can be seen for the entire range. The distances to the first coordination shell for low-, high-, and very-high-density amorphous ice (LDA, HDA, VHDA) were determined to be 2.75, 2.78, and 2.80 Å, respectively, with high accuracy due to measurements up to a large momentum transfer of 23 Å-1. Similarities in pair-distribution functions between LDA and supercooled water at 254.1 K, HDA and liquid water at 365.9 K, and VHDA and high-pressure liquid water were found up to around 8 Å, but beyond that at longer distances, the similarities were lost. In addition, the structure of the high-density amorphous ices was compared to high-pressure crystalline ices IV, IX, and XII, and conclusions were drawn about the local ordering
    • 

    corecore