849 research outputs found

    Astrometry and Exoplanets: the Gaia Era, and Beyond

    Full text link
    The wealth of information in the Gaia catalogue of exoplanets will constitute a fundamental contribution to several hot topics of the astrophysics of planetary systems. I briefly review the potential impact of Gaia micro-arsec astrometry in several areas of exoplanet science, discuss what key follow-up observations might be required as a complement to Gaia data, and shed some light on the role of next generation astrometric facilities in the arena of planetary systems.Comment: 6 pages, 1 figure. Proceedings of the final ELSA Conference 'Gaia: at the frontiers of astrometry', Sevres (France), 7-11 June 2010. To appear in EAS Publication Series, EDP Science

    Exoplanets with Gaia: Synergies in the Making

    Full text link
    The era of high-precision astrometry has dawned upon us. The potential of Gaia μ\muas-level precision in positional measurements is about to be unleashed in the field of extrasolar planetary systems. The Gaia data hold the promise for much improved global characterization of planetary systems around stars of all types, ages, and chemical composition, particularly when synergistically combined with other indirect and direct planet detection and characterization programs.Comment: 7 pages, 1 figure. Proceedings of the International Conference 'The Milky Way Unravelled by Gaia', Barcelona (Spain), 1-5 December 2014. EAS Publication Series, in pres

    The Gaia Survey Contribution to EChO Target Selection and Characterization

    Get PDF
    The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main physical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.Comment: 6 pages, 2 figures. Accepted for publication in Experimental Astronom

    Hipparcos preliminary astrometric masses for the two close-in companions to HD 131664 and HD 43848. A brown dwarf and a low mass star

    Full text link
    [abridged] We attempt to improve on the characterization of the properties (orbital elements, masses) of two Doppler-detected sub-stellar companions to the nearby G dwarfs HD 131664 and HD 43848. We carry out orbital fits to the Hipparcos IAD for the two stars, taking advantage of the knowledge of the spectroscopic orbits, and solving for the two orbital elements that can be determined in principle solely by astrometry, the inclination angle ii and the longitude of the ascending node Ω\Omega. A number of checks are carried out in order to assess the reliability of the orbital solutions thus obtained. The best-fit solution for HD 131664 yields i=55±33i=55\pm33 deg and Ω=22±28\Omega=22\pm28 deg. The resulting inferred true companion mass is then Mc=23−5+26M_c = 23_{-5}^{+26} MJM_J. For \object{HD 43848}, we find i=12±7i=12\pm7 deg and Ω=288±22\Omega=288\pm22 deg, and Mc=120−43+167M_c = 120_{-43}^{+167} MJM_J. Based on the statistical evidence from an FF-test, the study of the joint confidence intervals of variation of ii and Ω\Omega, and the comparison of the derived orbital semi-major axes with a distribution of false astrometric orbits obtained for single stars observed by Hipparcos, the astrometric signal of the two companions to HD 131664 and HD 43848 is then considered detected in the Hipparcos IAD, with a level of statistical confidence not exceeding 95%. We constrain the true mass of HD 131664b to that of a brown dwarf to within a somewhat statistically significant degree of confidence (∼2−σ\sim2-\sigma). For HD 43848b, a true mass in the brown dwarf regime is ruled out at the 1−σ1-\sigma confidence level. [abridged]Comment: 13 pages, 6 figures, 4 tables. Accepted for publication in Astronomy & Astrophysic

    The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    Full text link
    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with "classical" (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the "classical" model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction processes. In particular, we find that in the Milky Way the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic center, and the model with radial flows predicts a number which is 38% larger than what predicted by the classical model. For Andromeda we find that the maximum number of stars with habitable planets is at 16 kpc from the center and that in the case of radial flows this number is larger by 10 % relative to the stars predicted by the classical model.Comment: Accepted by MNRA

    Testing Planet Formation Models with Gaia μ\muas Astrometry

    Full text link
    In this paper, we first summarize the results of a large-scale double-blind tests campaign carried out for the realistic estimation of the Gaia potential in detecting and measuring planetary systems. Then, we put the identified capabilities in context by highlighting the unique contribution that the Gaia exoplanet discoveries will be able to bring to the science of extrasolar planets during the next decade.Comment: 4 pages, 1 figure. To appear in the proceedings of "IAU Symposium 248 - A Giant Step: from Milli- to Micro-arcsecond Astrometry", held in Shanghai, China, 15-19 Oct. 200
    • …
    corecore