508 research outputs found

    IWS: Integrated web server for protein sequence and structure analysis

    Get PDF
    Rapid increase in protein sequence information from genome sequencing projects demand the intervention of bioinformatics tools to recognize interesting gene-products and associated function. Often, multiple algorithms need to be employed to improve accuracy in predictions and several structure prediction algorithms are on the public domain. Here, we report the availability of an Integrated Web-server as a bioinformatics online package dedicated for in-silico analysis of protein sequence and structure data (IWS). IWS provides web interface to both in-house and widely accepted programs from major bioinformatics groups, organized as 10 different modules. IWS also provides interactive images for Analysis Work Flow, which will provide transparency to the user to carry out analysis by moving across modules seamlessly and to perform their predictions in a rapid manner

    Molecular Modelling of Oligomeric States of DmOR83b, an Olfactory Receptor in D. Melanogaster

    Get PDF
    After the discovery of the complete repertoire of D. melanogaster Olfactory Receptors (ORs), candidate ORs have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all ORs share the same G-protein coupled receptor structure with seven transmembrane domains, they share poor sequence identity within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where ORs have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one OR type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of OR. The olfactory mechanism, further, appears to be conserved between insects and vertebrates. Understanding the function of insect ORs will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects. In this study, we propose molecular models for insect olfactory receptor co-receptor OR83b and its possible functional oligomeric states. The functional similarity of OR83b to GPCRs and ion channels has been exploited for understanding the structure of OR83b. We could observe that C-terminal region (TM4-7) of OR83b is involved in homodimer amd heterodimer formation (with OR22a) which suggests why C-terminus of insect ORs are highly conserved across different species. We also propose two possible ion channel pathways in OR83b: one formed by TM4-5 region with intracellular pore-forming domain and the other formed by TM5-6 with extracellular pore forming domain using analysis of the electrostatics distribution of the pore forming domain

    GenDiS: Genomic Distribution of protein structural domain Superfamilies

    Get PDF
    Several proteins that have substantially diverged during evolution retain similar three-dimensional structures and biological function inspite of poor sequence identity. The database on Genomic Distribution of protein structural domain Superfamilies (GenDiS) provides record for the distribution of 4001 protein domains organized as 1194 structural superfamilies across 18 997 genomes at various levels of hierarchy in taxonomy. GenDiS database provides a survey of protein domains enlisted in sequence databases employing a 3-fold sequence search approach. Lineage-specific literature is obtained from the taxonomy database for individual protein members to provide a platform for performing genomic and phyletic studies across organisms. The database documents residual properties and provides alignments for the various superfamily members in genomes, offering insights into the rational design of experiments and for the better understanding of a superfamily. GenDiS database can be accessed at http://www.ncbs.res.in/~faculty/mini/gendis/home.html

    PASS2: an automated database of protein alignments organised as structural superfamilies

    Get PDF
    BACKGROUND: The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. DESCRIPTION: An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. CONCLUSIONS: The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible a

    Analysis of the impact of ERK5, JNK, and P38 kinase cascades on each other: A systems approach

    Get PDF
    The classical concept of linear pathways is being increasingly challenged by network representations, which emphasize the importance of interactions between components of a biological system, and motivates for adopting a system‐level approach in biology. We have developed a dynamical system that integrates quantitative, dynamic and topological representation of network of ERK5 (Extracellular signal‐regulated kinases 5), JNK(c‐Jun N‐terminal kinases) and P38 kinase cascades. We have observered that, the transient activation of ERK5, JNK1 and P38β kinase, and the persistent activation of JNK2, JNK3 and P38 δ kinase does not get affected due to the cross‐talks between ERK5, JNK and P38 kinase cascades. But it is due to the cross ‐ talks, the transiently activated P38α kinase become inactivated, and the transiently activated P38γ kinase become persistently activated. The impacts of one‐way cross‐talks between the cascades are insignificant and differ from the impact of two‐way cross‐talks. We generate a hypothesis that, signaling pathways should be studied as a system by considering the cross‐talks between the two adjacent cascades

    Cross genome comparisons of serine proteases in Arabidopsis and rice

    Get PDF
    BACKGROUND: Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa) genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. RESULTS: Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively). Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. CONCLUSION: The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species

    iMOTdb—a comprehensive collection of spatially interacting motifs in proteins

    Get PDF
    Realization of conserved residues that represent a protein family is crucial for clearer understanding of biological function as well as for the better recognition of additional members in sequence databases. Functionally important residues are recognized well due to their high degree of conservation in closely related sequences and are annotated in functional motif databases. Structural motifs are central to the integrity of the fold and require careful analysis for their identification. We report the availability of a database of spatially interacting motifs in single protein structures as well as those among distantly related protein structures that belong to a superfamily. Spatial interactions amongst conserved motifs are automatically measured using sequence similarity scores and distance calculations. Interactions between pairs of conserved motifs are described in the form of pseudoenergies. iMOTdb database provides information for 854 488 motifs corresponding to 60 849 protein structural domains and 22 648 protein structural entries

    Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues.</p> <p>Results</p> <p>To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation <it>viz</it>. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program.</p> <p>Conclusion</p> <p>Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.</p

    Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors

    Get PDF
    BACKGROUND: The cell-membrane G-protein coupled receptors (GPCRs) are one of the largest known superfamilies and are the main focus of intense pharmaceutical research due to their key role in cell physiology and disease. A large number of putative GPCRs are 'orphans' with no identified natural ligands. The first step in understanding the function of orphan GPCRs is to identify their ligands. Phylogenetic clustering methods were used to elucidate the chemical nature of receptor ligands, which led to the identification of natural ligands for many orphan receptors. We have clustered human and Drosophila receptors with known ligands and orphans through cross genome phylogenetic analysis and hypothesized higher relationship of co-clustered members that would ease ligand identification, as related receptors share ligands with similar structure or class. RESULTS: Cross-genome phylogenetic analyses were performed to identify eight major groups of GPCRs dividing them into 32 clusters of 371 human and 113 Drosophila proteins (excluding olfactory, taste and gustatory receptors) and reveal unexpected levels of evolutionary conservation across human and Drosophila GPCRs. We also observe that members of human chemokine receptors, involved in immune response, and most of nucleotide-lipid receptors (except opsins) do not have counterparts in Drosophila. Similarly, a group of Drosophila GPCRs (methuselah receptors), associated in aging, is not present in humans. CONCLUSION: Our analysis suggests ligand class association to 52 unknown Drosophila receptors and 95 unknown human GPCRs. A higher level of phylogenetic organization was revealed in which clusters with common domain architecture or cellular localization or ligand structure or chemistry or a shared function are evident across human and Drosophila genomes. Such analyses will prove valuable for identifying the natural ligands of Drosophila and human orphan receptors that can lead to a better understanding of physiological and pathological roles of these receptors

    Computational prediction and analysis of impact of the cross‐talks between JNK and P38 kinase cascades

    Get PDF
    Signal transduction is a complex protein signaling process with a rich network of multifunctional interactions that occur in a non‐linear fashion. Mitogen‐activated protein kinase (MAPK) signal transduction pathways regulate diverse cellular processes ranging from proliferation and differentiation to apoptosis. In mammals, out of five, there are three well characterized subfamilies of MAPKs ‐ ERKs (Extracellular signal‐regulated kinases), JNKs (c‐Jun N‐terminal kinases), and P38 kinases, and their activators, are implicated in human diseases and are targets for drug development. Kinase cascades in MAPK pathways mediate the sensing and processing of stimuli. To understand how cells makes decisions, the dynamic interactions of components of signaling cascades are important rather than just creating static maps. Based on enzyme kinetic reactions, we have developed a mathematical model to analyze the impact of the cross‐talks between JNK and P38 kinase cascades. Cross‐talks between JNK and P38 kinase cascades influence the activities of P38 kinases. Responses of the signals should be studied for network of kinase cascades by considering cross‐talks
    • …
    corecore