103 research outputs found

    Collections Theft Response Procedures

    Get PDF
    Offers guidance for theft response and suggest actions to take before and after an incident

    Identifying a nuclear passport for HIV

    Get PDF
    Identification of a protein that pulls HIV into the nucleus explains a key step in HIV infection

    Biochemical studies of the Saccharomyces cerevisiae Mph1 helicase on junction-containing DNA structures

    Get PDF
    Saccharomyces cerevisiae Mph1 is a 3–5′ DNA helicase, required for the maintenance of genome integrity. In order to understand the ATPase/helicase role of Mph1 in genome stability, we characterized its helicase activity with a variety of DNA substrates, focusing on its action on junction structures containing three or four DNA strands. Consistent with its 3′ to 5′ directionality, Mph1 displaced 3′-flap substrates in double-fixed or equilibrating flap substrates. Surprisingly, Mph1 displaced the 5′-flap strand more efficiently than the 3′ flap strand from double-flap substrates, which is not expected for a 3–5′ DNA helicase. For this to occur, Mph1 required a threshold size (>5 nt) of 5′ single-stranded DNA flap. Based on the unique substrate requirements of Mph1 defined in this study, we propose that the helicase/ATPase activity of Mph1 play roles in converting multiple-stranded DNA structures into structures cleavable by processing enzymes such as Fen1. We also found that the helicase activity of Mph1 was used to cause structural alterations required for restoration of replication forks stalled due to damaged template. The helicase properties of Mph1 reported here could explain how it resolves D-loop structure, and are in keeping with a model proposed for the error-free damage avoidance pathway

    The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation

    Get PDF
    RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates

    Mechanism and substrate specificity of telomeric protein POT1 stimulation of the Werner syndrome helicase

    Get PDF
    Loss of the RecQ helicase WRN protein causes the cancer-prone progeroid disorder Werner syndrome (WS). WS cells exhibit defects in DNA replication and telomere preservation. The telomeric single-stranded binding protein POT1 stimulates WRN helicase to unwind longer telomeric duplexes that are otherwise poorly unwound. We reasoned that stimulation might occur by POT1 recruiting and retaining WRN on telomeric substrates during unwinding and/or by POT1 loading on partially unwound ssDNA strands to prevent strand re-annealing. To test these possibilities, we used substrates with POT1-binding sequences in the single-stranded tail, duplex or both. POT1 binding to ssDNA tails did not alter WRN activity on nontelomeric duplexes or recruit WRN to telomeric ssDNA. However, POT1 bound tails inhibited WRN activity on telomeric duplexes with a single 3′-ssDNA tail, which mimic telomeric ends in the open conformation. In contrast, POT1 bound tails stimulated WRN unwinding of forked telomeric duplexes. This indicates that POT1 interaction with the ssDNA/dsDNA junction regulates WRN activity. Furthermore, POT1 did not enhance retention of WRN on telomeric forks during unwinding. Collectively, these data suggest POT1 promotes the apparent processivity of WRN helicase by maintaining partially unwound strands in a melted state, rather than preventing WRN dissociation from the substrate

    Telomeric protein TRF2 protects Holliday junctions with telomeric arms from displacement by the Werner syndrome helicase

    Get PDF
    WRN protein loss causes Werner syndrome (WS), which is characterized by premature aging as well as genomic and telomeric instability. WRN prevents telomere loss, but the telomeric protein complex must regulate WRN activities to prevent aberrant telomere processing. Telomere-binding TRF2 protein inhibits telomere t-loop deletion by blocking Holliday junction (HJ) resolvase cleavage activity, but whether TRF2 also modulates HJ displacement at t-loops is unknown. In this study, we used multiplex fluorophore imaging to track the fate of individual strands of HJ substrates. We report the novel finding that TRF2 inhibits WRN helicase strand displacement of HJs with telomeric repeats in duplex arms, but unwinding of HJs with a telomeric center or lacking telomeric sequence is unaffected. These data, together with results using TRF2 fragments and TRF2 HJ binding assays, indicate that both the TRF2 B- and Myb domains are required to inhibit WRN HJ activity. We propose a novel model whereby simultaneous binding of the TRF2 B-domain to the HJ core and the Myb domain to telomeric arms promote and stabilize HJs in a stacked arm conformation that is unfavorable for unwinding. Our biochemical study provides a mechanistic basis for the cellular findings that TRF2 regulates WRN activity at telomeres

    The Werner Syndrome Protein Suppresses Telomeric Instability Caused by Chromium (VI) Induced DNA Replication Stress

    Get PDF
    Telomeres protect the chromosome ends and consist of guanine-rich repeats coated by specialized proteins. Critically short telomeres are associated with disease, aging and cancer. Defects in telomere replication can lead to telomere loss, which can be prevented by telomerase-mediated telomere elongation or activities of the Werner syndrome helicase/exonuclease protein (WRN). Both telomerase and WRN attenuate cytotoxicity induced by the environmental carcinogen hexavalent chromium (Cr(VI)), which promotes replication stress and DNA polymerase arrest. However, it is not known whether Cr(VI)-induced replication stress impacts telomere integrity. Here we report that Cr(VI) exposure of human fibroblasts induced telomeric damage as indicated by phosphorylated H2AX (γH2AX) at telomeric foci. The induced γH2AX foci occurred in S-phase cells, which is indicative of replication fork stalling or collapse. Telomere fluorescence in situ hybridization (FISH) of metaphase chromosomes revealed that Cr(VI) exposure induced an increase in telomere loss and sister chromatid fusions that were rescued by telomerase activity. Human cells depleted for WRN protein exhibited a delayed reduction in telomeric and non-telomeric damage, indicated by γH2AX foci, during recovery from Cr(VI) exposure, consistent with WRN roles in repairing damaged replication forks. Telomere FISH of chromosome spreads revealed that WRN protects against Cr(VI)-induced telomere loss and downstream chromosome fusions, but does not prevent chromosome fusions that retain telomere sequence at the fusion point. Our studies indicate that environmentally induced replication stress leads to telomere loss and aberrations that are suppressed by telomerase-mediated telomere elongation or WRN functions in replication fork restoration

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation

    Get PDF
    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation
    corecore