1,341 research outputs found
Steps in the bacterial flagellar motor
The bacterial flagellar motor is a highly efficient rotary machine used by
many bacteria to propel themselves. It has recently been shown that at low
speeds its rotation proceeds in steps [Sowa et al. (2005) Nature 437,
916--919]. Here we propose a simple physical model that accounts for this
stepping behavior as a random walk in a tilted corrugated potential that
combines torque and contact forces. We argue that the absolute angular position
of the rotor is crucial for understanding step properties, and show this
hypothesis to be consistent with the available data, in particular the
observation that backward steps are smaller on average than forward steps. Our
model also predicts a sublinear torque-speed relationship at low torque, and a
peak in rotor diffusion as a function of torque
On the emergent Semantic Web and overlooked issues
The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues
- âŠ