42,815 research outputs found
Orbital magnetoelectric coupling at finite electric field
We extend the band theory of linear orbital magnetoelectric coupling to treat
crystals under finite electric fields. Previous work established that the
orbital magnetoelectric response of a generic insulator at zero field comprises
three contributions that were denoted as local circulation, itinerant
circulation, and Chern-Simons. We find that the expression for each of them is
modified by the presence of a dc electric field. Remarkably, the sum of the
three correction terms vanishes, so that the total coupling is still given by
the same formula as at zero field. This conclusion is confirmed by numerical
tests on a tight-binding model, for which we calculate the field-induced change
in the linear magnetoelectric coefficient.Comment: 4 pages, 2 figure
NASA Developmental Biology Workshop: A summary
The Life Sciences Division of the National Aeronautics and Space Administration (NASA) as part of its continuing assessment of its research program, convened a workshop on Developmental Biology to determine whether there are important scientific studies in this area which warrant continued or expanded NASA support. The workshop consisted of six panels, each of which focused on a single major phylogenetic group. The objectives of each panel were to determine whether gravity plays a role in the ontogeny of their subject group, to determine whether the microgravity of spaceflight can be used to help understand fundamental problems in developmental biology, to develop the rationale and hypotheses for conducting NASA-relevant research in development biology both on the ground and in space, and to identify any unique equipment and facilities that would be required to support both ground-based and spaceflight experiments
How the brain represents the reward value of fat in the mouth.
The palatability and pleasantness of the sensory properties of foods drive food selection and intake and may contribute to overeating and obesity. Oral fat texture can make food palatable and pleasant. To analyze its neural basis, we correlated humans’ subjective reports of the pleasantness of the texture and flavor of a high- and low-fat food with a vanilla or strawberry flavor, with neural activations measured with functional magnetic resonance imaging. Activity in the midorbitofrontal and anterior cingulate cortex was correlated with the pleasantness of oral fat texture and in nearby locations with the pleasantness of flavor. The pregenual cingulate cortex showed a supralinear response to the combination of high fat and pleasant, sweet flavor, implicating it in the convergence of fat texture and flavor to produce a representation of highly pleasant stimuli. The subjective reports of oral fattiness were correlated with activations in the midorbitofrontal cortex and ventral striatum. The lateral hypothalamus and amygdala were more strongly activated by high- versus low-fat stimuli. This discovery of which brain regions track the subjective hedonic experience of fat texture will help to unravel possible differences in the neural responses in obese versus lean people to oral fat, a driver of food intake
Coarse graining scale and effectiveness of hydrodynamic modeling
Some basic questions about the hydrodynamical approach to relativistic heavy
ion collisions are discussed aiming to clarify how far we can go with such an
approach to extract useful information on the properties and dynamics of the
QCD matter created. We emphasize the importance of the coarse-graining scale
required for the hydrodynamic modeling which determines the space-time
resolution and the associated limitations of collective flow observables. We
show that certain kinds of observables can indicate the degree of inhomogeneity
of the initial condition under less stringent condition than the local thermal
equilibrium subjected to the coarse-graining scale compatible to the scenario.Comment: 12 pages, 4 figures, Quark Matter 201
- …