19,025 research outputs found

    Irreversibility and the arrow of time in a quenched quantum system

    Get PDF
    Irreversibility is one of the most intriguing concepts in physics. While microscopic physical laws are perfectly reversible, macroscopic average behavior has a preferred direction of time. According to the second law of thermodynamics, this arrow of time is associated with a positive mean entropy production. Using a nuclear magnetic resonance setup, we measure the nonequilibrium entropy produced in an isolated spin-1/2 system following fast quenches of an external magnetic field and experimentally demonstrate that it is equal to the entropic distance, expressed by the Kullback-Leibler divergence, between a microscopic process and its time-reverse. Our result addresses the concept of irreversibility from a microscopic quantum standpoint.Comment: 8 pages, 7 figures, RevTeX4-1; Accepted for publication Phys. Rev. Let

    Experimental Determination of Thermal Entanglement in Spin Clusters using Magnetic Susceptibility Measurements

    Full text link
    The present work reports an experimental observation of thermal entanglement in a clusterized spin chain formed in the compound Na2_2Cu5_5Si4_4O14_{14}. The presence of entanglement was investigated through two measured quantities, an Entanglement Witness and the Entanglement of Formation, both derived from the magnetic susceptibility. It was found that pairwise entanglement exists below 200 \sim 200 K. Tripartite entanglement was also observed below 240 \sim 240 K. A theoretical study of entanglement evolution as a function of applied field and temperature is also presented.Comment: Submited to Phys. Rev.

    Preparo de amostras padrão para controle de qualidade laboratorial.

    Get PDF
    Diante da necessidade do controle de qualidade para os ensaios de fertilidade do solo (K, Ca, Mg, Mn, Fe, Al, Zn, P, Cu, matéria orgânica, H+Al, pH) realizados pelo Laboratório de Análise Agroambiental produziu-se 3 amostras padrão em diferentes níveis de fertilidade. Selecionou-se estas amostras em diferentes pontos da Fazenda Capivara e Fazenda Palmital, coletou-se cerca de 5 kg e em seguida, as amostras foram secas, moídas e peneiradas.Pôster - graduação

    Polarization and Strong Infra-Red Activity in Compressed Solid Hydrogen

    Full text link
    Under a pressure of ~150 GPa solid molecular hydrogen undergoes a phase transition accompanied by a dramatic rise in infra-red absorption in the vibron frequency range. We use the Berry's phase approach to calculate the electric polarization in several candidate structures finding large, anisotropic dynamic charges and strongly IR-active vibron modes. The polarization is shown to be greatly affected by the overlap between the molecules in the crystal, so that the commonly used Clausius-Mossotti description in terms of polarizable, non-overlapping molecular charge densities is inadequate already at low pressures and even more so for the compressed solid.Comment: To appear in Phys. Rev. Let

    Bacterial selection for biological control of plantdisease: criterion determination and validation.

    Get PDF
    This study aimed to evaluate the biocontrol potential of bacteria isolated from different plant species and soils. The production of compounds related to phytopathogen biocontrol and/or promotion of plant growth in bacterial isolates was evaluated by measuring the production of antimicrobial compounds (ammonia and antibiosis) and hydrolytic enzymes (amylases, lipases, proteases, and chitinases) and phosphate solubilization. Of the 1219 bacterial isolates, 92% produced one or more of the eight compounds evaluated, but only 1% of the isolates produced all the compounds. Proteolytic activity was most frequently observed among the bacterial isolates. Among the compounds which often determine the success of biocontrol, 43% produced compounds which inhibit mycelial growth of Monilinia fructicola, but only 11% hydrolyzed chitin. Bacteria from different plant species (rhizosphere or phylloplane) exhibited differences in the ability to produce the compounds evaluated. Most bacterial isolates with biocontrol potential were isolated from rhizospheric soil. The most ef?cient bacteria (producing at least ?ve compounds related to phytopathogen biocontrol and/or plant growth), 86 in total, were evaluated for their biocontrol potential by observing their ability to kill juvenile Mesocriconema xenoplax. Thus, we clearly observed that bacteria that produced more compounds related to phytopathogen biocontrol and/or plant growth had a higher ef?cacy for nematode biocontrol, which validated the selection strategy used
    corecore