39,272 research outputs found
Robustness of quantum discord to sudden death
We calculate the dissipative dynamics of two-qubit quantum discord under
Markovian environments. We analyze various dissipative channels such as
dephasing, depolarizing, and generalized amplitude damping, assuming
independent perturbation, in which each qubit is coupled to its own channel.
Choosing initial conditions that manifest the so-called sudden death of
entanglement, we compare the dynamics of entanglement with that of quantum
discord. We show that in all cases where entanglement suddenly disappears,
quantum discord vanishes only in the asymptotic limit, behaving similarly to
individual decoherence of the qubits, even at finite temperatures. Hence,
quantum discord is more robust than the entanglement against to decoherence so
that quantum algorithms based only on quantum discord correlations may be more
robust than those based on entanglement.Comment: 4 figures, 4 page
On Lorentz violation in scattering at finite temperature
Small violation of Lorentz and CPT symmetries may emerge in models unifying
gravity with other forces of nature. An extension of the standard model with
all possible terms that violate Lorentz and CPT symmetries are included. Here a
CPT-even non-minimal coupling term is added to the covariant derivative. This
leads to a new interaction term that breaks the Lorentz symmetry. Our main
objective is to calculate the cross section for the
scattering in order to
investigate any violation of Lorentz and/or CPT symmetry at finite temperature.
Thermo Field Dynamics formalism is used to consider finite temperature effects.Comment: 12 pages, 1 figure, accepted for publication in PL
- …