31,931 research outputs found
Nuclear multifragmentation within the framework of different statistical ensembles
The sensitivity of the Statistical Multifragmentation Model to the underlying
statistical assumptions is investigated. We concentrate on its micro-canonical,
canonical, and isobaric formulations. As far as average values are concerned,
our results reveal that all the ensembles make very similar predictions, as
long as the relevant macroscopic variables (such as temperature, excitation
energy and breakup volume) are the same in all statistical ensembles. It also
turns out that the multiplicity dependence of the breakup volume in the
micro-canonical version of the model mimics a system at (approximately)
constant pressure, at least in the plateau region of the caloric curve.
However, in contrast to average values, our results suggest that the
distributions of physical observables are quite sensitive to the statistical
assumptions. This finding may help deciding which hypothesis corresponds to the
best picture for the freeze-out stageComment: 20 pages, 7 figure
Experimental analysis of lateral impact on planar brittle material: spatial properties of the cracks
The breakup of glass and alumina plates due to planar impacts on one of their
lateral sides is studied. Particular attention is given to investigating the
spatial location of the cracks within the plates. Analysis based on a
phenomenological model suggests that bifurcations along the cracks' paths are
more likely to take place closer to the impact region than far away from it, i.
e., the bifurcation probability seems to lower as the perpendicular distance
from the impacted lateral in- creases. It is also found that many observables
are not sensitive to the plate material used in this work, as long as the
fragment multiplicities corresponding to the fragmentation of the plates are
similar. This gives support to the universal properties of the fragmentation
process reported in for- mer experiments. However, even under the just
mentioned circumstances, some spatial observables are capable of distinguishing
the material of which the plates are made and, therefore, it suggests that this
universality should be carefully investigated
de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology
We investigate the influence of massive photons on the evolution of the
expanding universe. Two particular models for generalized electrodynamics are
considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We
obtain the equation of state (EOS) for each case using
dispersion relations derived from both theories. The EOS are inputted into the
Friedmann equations of a homogeneous and isotropic space-time to determine the
cosmic scale factor . It is shown that the photon non-null mass does not
significantly alter the result valid for a massless photon
gas; this is true either in de Broglie-Proca's case (where the photon mass
is extremely small) or in Bopp-Podolsky theory (for which is extremely
large).Comment: 8 pages, 2 figures; v2 matches the published versio
- âŠ