31,931 research outputs found

    Nuclear multifragmentation within the framework of different statistical ensembles

    Full text link
    The sensitivity of the Statistical Multifragmentation Model to the underlying statistical assumptions is investigated. We concentrate on its micro-canonical, canonical, and isobaric formulations. As far as average values are concerned, our results reveal that all the ensembles make very similar predictions, as long as the relevant macroscopic variables (such as temperature, excitation energy and breakup volume) are the same in all statistical ensembles. It also turns out that the multiplicity dependence of the breakup volume in the micro-canonical version of the model mimics a system at (approximately) constant pressure, at least in the plateau region of the caloric curve. However, in contrast to average values, our results suggest that the distributions of physical observables are quite sensitive to the statistical assumptions. This finding may help deciding which hypothesis corresponds to the best picture for the freeze-out stageComment: 20 pages, 7 figure

    Experimental analysis of lateral impact on planar brittle material: spatial properties of the cracks

    Get PDF
    The breakup of glass and alumina plates due to planar impacts on one of their lateral sides is studied. Particular attention is given to investigating the spatial location of the cracks within the plates. Analysis based on a phenomenological model suggests that bifurcations along the cracks' paths are more likely to take place closer to the impact region than far away from it, i. e., the bifurcation probability seems to lower as the perpendicular distance from the impacted lateral in- creases. It is also found that many observables are not sensitive to the plate material used in this work, as long as the fragment multiplicities corresponding to the fragmentation of the plates are similar. This gives support to the universal properties of the fragmentation process reported in for- mer experiments. However, even under the just mentioned circumstances, some spatial observables are capable of distinguishing the material of which the plates are made and, therefore, it suggests that this universality should be carefully investigated

    de Broglie-Proca and Bopp-Podolsky massive photon gases in cosmology

    Full text link
    We investigate the influence of massive photons on the evolution of the expanding universe. Two particular models for generalized electrodynamics are considered, namely de Broglie-Proca and Bopp-Podolsky electrodynamics. We obtain the equation of state (EOS) P=P(Δ)P=P(\varepsilon) for each case using dispersion relations derived from both theories. The EOS are inputted into the Friedmann equations of a homogeneous and isotropic space-time to determine the cosmic scale factor a(t)a(t). It is shown that the photon non-null mass does not significantly alter the result a∝t1/2a\propto t^{1/2} valid for a massless photon gas; this is true either in de Broglie-Proca's case (where the photon mass mm is extremely small) or in Bopp-Podolsky theory (for which mm is extremely large).Comment: 8 pages, 2 figures; v2 matches the published versio
    • 

    corecore