36,053 research outputs found

    On Lorentz violation in e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering at finite temperature

    Full text link
    Small violation of Lorentz and CPT symmetries may emerge in models unifying gravity with other forces of nature. An extension of the standard model with all possible terms that violate Lorentz and CPT symmetries are included. Here a CPT-even non-minimal coupling term is added to the covariant derivative. This leads to a new interaction term that breaks the Lorentz symmetry. Our main objective is to calculate the cross section for the e ⁣ ⁣+ ⁣e+ ⁣ ⁣μ ⁣ ⁣+ ⁣μ+e^{-}\!\!+\!e^{+}\!\rightarrow\!\mu^{-}\!\!+\!\mu^{+} scattering in order to investigate any violation of Lorentz and/or CPT symmetry at finite temperature. Thermo Field Dynamics formalism is used to consider finite temperature effects.Comment: 12 pages, 1 figure, accepted for publication in PL

    Localization properties of a tight-binding electronic model on the Apollonian network

    Get PDF
    An investigation on the properties of electronic states of a tight-binding Hamiltonian on the Apollonian network is presented. This structure, which is defined based on the Apollonian packing problem, has been explored both as a complex network, and as a substrate, on the top of which physical models can defined. The Schrodinger equation of the model, which includes only nearest neighbor interactions, is written in a matrix formulation. In the uniform case, the resulting Hamiltonian is proportional to the adjacency matrix of the Apollonian network. The characterization of the electronic eigenstates is based on the properties of the spectrum, which is characterized by a very large degeneracy. The 2π/32\pi /3 rotation symmetry of the network and large number of equivalent sites are reflected in all eigenstates, which are classified according to their parity. Extended and localized states are identified by evaluating the participation rate. Results for other two non-uniform models on the Apollonian network are also presented. In one case, interaction is considered to be dependent of the node degree, while in the other one, random on-site energies are considered.Comment: 7pages, 7 figure

    Near-barrier Fusion Induced by Stable Weakly Bound and Exotic Halo Light Nuclei

    Get PDF
    The effect of breakup is investigated for the medium weight 6^{6}Li+59^{59}Co system in the vicinity of the Coulomb barrier. The strong coupling of breakup/transfer channels to fusion is discussed within a comparison of predictions of the Continuum Discretized Coupled-Channels model which is also applied to 6^{6}He+59^{59}Co a reaction induced by the borromean halo nucleus 6^{6}He.Comment: 6 pages, 3 figures. A talk given at the FUSION06: International Conference on Reaction Mechanisms and Nuclear Structure at the Coulomb barrier, March 19-23, 2006, San Servolo, Venezia, Ital

    The graphene sheet versus the 2DEG: a relativistic Fano spin-filter via STM and AFM tips

    Full text link
    We explore theoretically the density of states (LDOS) probed by an STM tip of 2D systems hosting an adatom and a subsurface impurity,both capacitively coupled to AFM tips and traversed by antiparallel magnetic fields. Two kinds of setups are analyzed, a monolayer of graphene and a two-dimensional electron gas (2DEG). The AFM tips set the impurity levels at the Fermi energy, where two contrasting behaviors emerge: the Fano factor for the graphene diverges, while in the 2DEG it approaches zero. As result, the spin-degeneracy of the LDOS is lifted exclusively in the graphene system, in particular for the asymmetric regime of Fano interference. The aftermath of this limit is a counterintuitive phenomenon, which consists of a dominant Fano factor due to the subsurface impurity even with a stronger STM-adatom coupling. Thus we find a full polarized conductance, achievable just by displacing vertically the position of the STM tip. To the best knowledge, our work is the first to propose the Fano effect as the mechanism to filter spins in graphene. This feature arises from the massless Dirac electrons within the band structure and allows us to employ the graphene host as a relativistic Fano spin-filter
    corecore