28,656 research outputs found
A Compound model for the origin of Earth's water
One of the most important subjects of debate in the formation of the solar
system is the origin of Earth's water. Comets have long been considered as the
most likely source of the delivery of water to Earth. However, elemental and
isotopic arguments suggest a very small contribution from these objects. Other
sources have also been proposed, among which, local adsorption of water vapor
onto dust grains in the primordial nebula and delivery through planetesimals
and planetary embryos have become more prominent. However, no sole source of
water provides a satisfactory explanation for Earth's water as a whole. In view
of that, using numerical simulations, we have developed a compound model
incorporating both the principal endogenous and exogenous theories, and
investigating their implications for terrestrial planet formation and
water-delivery. Comets are also considered in the final analysis, as it is
likely that at least some of Earth's water has cometary origin. We analyze our
results comparing two different water distribution models, and complement our
study using D/H ratio, finding possible relative contributions from each
source, focusing on planets formed in the habitable zone. We find that the
compound model play an important role by showing more advantage in the amount
and time of water-delivery in Earth-like planets.Comment: Accepted for publication in The Astrophysical Journa
Agrobacterium-mediated transformation of Mycosphaerella fijiensis, the devastating Black Sigatoka pathogen of bananas
Mycosphaerella fijiensis, M. musicola en M. eumusae veroorzaken de Sigatoka-ziekte in banaan. Op dit moment is de toepassing van fungiciden de enige optie om deze ziekte te bestrijden. Het PRPB (Pesticide Reduction Program for Banana) investeert in de ontwikkeling van technieken voor de genotype- en fenotypebepaling van M. fijiensis. Hierbij wordt gebruikt gemaakt van ATMT (Agrobacterium tumefaciens-mediated transformation)
Contemporary splinting practice in the UK for adults with neurological dysfunction: A cross-sectional survey
This article is made available through the Brunel Open Access Publishing Fund.Aim: To explore the contemporary splinting practice of UK occupational therapists and physiotherapists for adults with neurological dysfunction.
Method: Cross-sectional online survey of members of the Association of Chartered Physiotherapists in Neurology and College of Occupational Therapists Specialist Section Neurological Practice.
Results: Four hundred and twenty therapists completed the survey. Contracture management is the most common rationale for therapists splinting adults with neurological dysfunction. Other shared therapeutic goals of splinting include maintaining muscle and joint alignment, spasticity management, function, pain management and control of oedema. Considerable clinical uncertainty was uncovered in practice particularly around wearing regimens of splints. Most therapists have access to locally-derived splinting guidelines, which may contribute to this diversity of practice.
Conclusions: This study provides a unique insight into aspects of contemporary splinting practice among UK therapists, who belong to a specialist neurological professional network and work in a number of different health-care settings with adults who have a neurological condition. Study findings show a wide variation in splinting practice, thereby indicating a potential need for national guidance to assist therapists in this area of clinical uncertainty. Further research is required to establish best practice parameters for splinting in neurological rehabilitation
Three path interference using nuclear magnetic resonance: a test of the consistency of Born's rule
The Born rule is at the foundation of quantum mechanics and transforms our
classical way of understanding probabilities by predicting that interference
occurs between pairs of independent paths of a single object. One consequence
of the Born rule is that three way (or three paths) quantum interference does
not exist. In order to test the consistency of the Born rule, we examine
detection probabilities in three path intereference using an ensemble of
spin-1/2 quantum registers in liquid state nuclear magnetic resonance (LSNMR).
As a measure of the consistency, we evaluate the ratio of three way
interference to two way interference. Our experiment bounded the ratio to the
order of , and hence it is consistent with Born's rule.Comment: 11 pages, 4 figures; Improved presentation of figures 1 and 4,
changes made in section 2 to better describe the experiment, minor changes
throughout, and added several reference
Western corn rootworm pyrethroid resistance confirmed by aerial application simulations of commercial insecticides
The western corn rootworm (Diabrotica virgifera virgifera LeConte) (WCR) is a major insect pest of corn (Zea mays L.) in the United States (US) and is highly adaptable to multiple management tactics. A low level of WCR field-evolved resistance to pyrethroid insecticides has been confirmed in the US western Corn Belt by laboratory dose-response bioassays. Further investigation has identified detoxification enzymes as a potential part of the WCR resistance mechanism, which could affect the performance of insecticides that are structurally related to pyrethroids, such as organophosphates. Thus, the responses of pyrethroid-resistant and -susceptible WCR populations to the commonly used pyrethroid bifenthrin and organophosphate dimethoate were compared in active ingredient bioassays. Results revealed a relatively low level of WCR resistance to both active ingredients. Therefore, a simulated aerial application bioassay technique was developed to evaluate how the estimated resistance levels would affect performance of registered rates of formulated products. The simulated aerial application technique confirmed pyrethroid resistance to formulated rates of bifenthrin whereas formulated dimethoate provided optimal control. Results suggest that the relationship between levels of resistance observed in dose-response bioassays and actual efficacy of formulated product needs to be further explored to understand the practical implications of resistance
The type of adjuvant in whole inactivated influenza a virus vaccines impacts vaccine-associated enhanced respiratory disease
Influenza A virus (IAV) causes a disease burden in the swine industry in the US and is a challenge to prevent due to substantial genetic and antigenic diversity of IAV that circulate in pig populations. Whole inactivated virus (WIV) vaccines formulated with oil-in-water (OW) adjuvant are commonly used in swine. However, WIV-OW are associated with vaccine-associated enhanced respiratory disease (VAERD) when the hemagglutinin and neuraminidase of the vaccine strain are mismatched with the challenge virus. Here, we assessed if different types of adjuvant in WIV vaccine formulations impacted VAERD outcome. WIV vaccines with a swine δ1-H1N2 were formulated with different commercial adjuvants: OW1, OW2, nano-emulsion squalene-based (NE) and gel polymer (GP). Pigs were vaccinated twice by the intramuscular route, 3 weeks apart, then challenged with an H1N1pdm09 three weeks post-boost and necropsied at 5 days post infection. All WIV vaccines elicited antibodies detected using the hemagglutination inhibition (HI) assay against the homologous vaccine virus, but not against the heterologous challenge virus; in contrast, all vaccinated groups had cross-reactive IgG antibody and IFN-γ responses against H1N1pdm09, with a higher magnitude observed in OW groups. Both OW groups demonstrated robust homologous HI titers and cross-reactivity against heterologous H1 viruses in the same genetic lineage. However, both OW groups had severe immunopathology consistent with VAERD after challenge when compared to NE, GP, and non-vaccinated challenge controls. None of the WIV formulations protected pigs from heterologous virus replication in the lungs or nasal cavity. Thus, although the type of adjuvant in the WIV formulation played a significant role in the magnitude of immune response to homologous and antigenically similar H1, none tested here increased the breadth of protection against the antigenically-distinct challenge virus, and some impacted immunopathology after challenge
Nuclear isotope thermometry
We discuss different aspects which could influence temperatures deduced from
experimental isotopic yields in the multifragmentation process. It is shown
that fluctuations due to the finite size of the system and distortions due to
the decay of hot primary fragments conspire to blur the temperature
determination in multifragmentation reactions. These facts suggest that caloric
curves obtained through isotope thermometers, which were taken as evidence for
a first-order phase transition in nuclear matter, should be investigated very
carefully.Comment: 9 pages, 7 figure
Constraining non-minimally coupled tachyon fields by Noether symmetry
A model for a spatially flat homogeneous and isotropic Universe whose
gravitational sources are a pressureless matter field and a tachyon field
non-minimally coupled to the gravitational field is analyzed. Noether symmetry
is used to find the expressions for the potential density and for the coupling
function, and it is shown that both must be exponential functions of the
tachyon field. Two cosmological solutions are investigated: (i) for the early
Universe whose only source of the gravitational field is a non-minimally
coupled tachyon field which behaves as an inflaton and leads to an exponential
accelerated expansion and (ii) for the late Universe whose gravitational
sources are a pressureless matter field and a non-minimally coupled tachyon
field which plays the role of dark energy and is the responsible of the
decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical
and Quantum Gravit
- …