29 research outputs found

    Alternation of Sound Location Induces Visual Motion Perception of a Static Object

    Get PDF
    Background: Audition provides important cues with regard to stimulus motion although vision may provide the most salient information. It has been reported that a sound of fixed intensity tends to be judged as decreasing in intensity after adaptation to looming visual stimuli or as increasing in intensity after adaptation to receding visual stimuli. This audiovisual interaction in motion aftereffects indicates that there are multimodal contributions to motion perception at early levels of sensory processing. However, there has been no report that sounds can induce the perception of visual motion. Methodology/Principal Findings: A visual stimulus blinking at a fixed location was perceived to be moving laterally when the flash onset was synchronized to an alternating left-right sound source. This illusory visual motion was strengthened with an increasing retinal eccentricity (2.5 deg to 20 deg) and occurred more frequently when the onsets of the audio and visual stimuli were synchronized. Conclusions/Significance: We clearly demonstrated that the alternation of sound location induces illusory visual motion when vision cannot provide accurate spatial information. The present findings strongly suggest that the neural representations of auditory and visual motion processing can bias each other, which yields the best estimates of externa

    Sound-contingent visual motion aftereffect

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion), one of the signals (color) becomes a driver for the other signal (motion). This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound.</p> <p>Results</p> <p>Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days.</p> <p>Conclusions</p> <p>These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.</p

    Sound Frequency and Aural Selectivity in Sound-Contingent Visual Motion Aftereffect

    Get PDF
    BACKGROUND: One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears. METHODOLOGY/PRINCIPAL FINDINGS: Two circles placed side by side were presented in alternation, producing apparent motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However, the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same ear. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the auditory processing underlying the establishment of novel audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage

    Auditory Motion Information Drives Visual Motion Perception

    Get PDF
    BACKGROUND: Vision provides the most salient information with regard to the stimulus motion. However, it has recently been demonstrated that static visual stimuli are perceived as moving laterally by alternating left-right sound sources. The underlying mechanism of this phenomenon remains unclear; it has not yet been determined whether auditory motion signals, rather than auditory positional signals, can directly contribute to visual motion perception. METHODOLOGY/PRINCIPAL FINDINGS: Static visual flashes were presented at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flash appeared to move by means of the auditory motion when the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the lateral auditory motion altered visual motion perception in a global motion display where different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception. CONCLUSIONS/SIGNIFICANCE: These findings suggest there exist direct interactions between auditory and visual motion signals, and that there might be common neural substrates for auditory and visual motion processing

    Sounds Move a Static Visual Object

    Get PDF
    Background: Vision provides the most salient information with regard to stimulus motion, but audition can also provide important cues that affect visual motion perception. Here, we show that sounds containing no motion or positional cues can induce illusory visual motion perception for static visual objects. Methodology/Principal Findings: Two circles placed side by side were presented in alternation producing apparent motion perception and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. When the flash onset was synchronized to tones of alternating frequencies, a circle blinking at a fixed location was perceived as lateral motion in the same direction as the previously exposed apparent motion. Furthermore, the effect lasted at least for a few days. The effect was well observed at the retinal position that was previously exposed to apparent motion with tone bursts. Conclusions/Significance: The present results indicate that strong association between sound sequence and visual motion is easily formed within a short period and that, after forming the association, sounds are able to trigger visual motio

    Anisotropy of temporal perception for touch across hand axes

    No full text
    corecore