10 research outputs found

    The Axial Anomaly in D=3+1 Light-Cone QED

    Get PDF
    We consider (3+1)(3+1)-dimensional, Dirac electrons of arbitrary mass, propagating in the presence of electric and magnetic fields which are both parallel to the x3x^3 axis. The magnetic field is constant in space and time whereas the electric field depends arbitrarily upon the light-cone time parameter x+=(x0+x3)/2x^+ = (x^0 + x^3)/\sqrt{2}. We present an explicit solution to the Heisenberg equations for the electron field operator in this background. The electric field results in the creation of electron-positron pairs. We compute the expectation values of the vector and axial vector currents in the presence of a state which is free vacuum at x+=0x^+ = 0. Both current conservation and the standard result for the axial vector anomaly are verified for the first time ever in (3+1)(3+1)-dimensional light-cone QED. An interesting feature of our operator solution is the fact that it depends in an essential way upon operators from the characteristic at x−=−Lx^- = -L, in addition to the usual dependence upon operators at x+=0x^+ = 0. This dependence survives even in the limit of infinite LL. Ignoring the x−x^- operators leads to a progressive loss of unitarity, to the violation of current conservation, to the loss of renormalizability, and to an incorrect result for the axial vector anomaly.Comment: 31 pages, LaTeX 2 epsilon, no figures, some typoes corrected for publicatio

    Possible Enhancement of High Frequency Gravitational Waves

    Full text link
    We study the tensor perturbations in a class of non-local, purely gravitational models which naturally end inflation in a distinctive phase of oscillations with slight and short violations of the weak energy condition. We find the usual generic form for the tensor power spectrum. The presence of the oscillatory phase leads to an enhancement of gravitational waves with frequencies somewhat less than 10^{10} Hz.Comment: 27 pages, 11 figures, LaTeX.2

    A Nonlocal Metric Formulation of MOND

    Get PDF
    We study a class of nonlocal, but causal, covariant and conserved field equations for the metric. Although nonlocal, these equations do not seem to possess extra graviton solutions in weak field perturbation theory. Indeed, the equations reduce to those of general relativity when the Ricci scalar vanishes throughout spacetime. When a static matter source is present we show how these equations can be adjusted to reproduce Milgrom's Modified Newtonian Dynamics in the weak field regime, while reducing to general relativity for strong fields. We compute the angular deflection of light in the weak field regime and demonstrate that it is the same as for general relativity, resulting in far too little lensing if no dark matter is present. We also study the field equations for a general Robertson-Walker geometry. An interesting feature of our equations is that they become conformally invariant in the MOND limit.Comment: 22 pages, LaTeX 2 epsilon, no figure

    R2R^2 corrections to the cosmological dynamics of inflation in the Palatini formulation

    Full text link
    We investigate the corrections to the inflationary cosmological dynamics due to a R2R^2 term in the Palatini formulation which may arise as quantum corrections to the effective Lagrangian in early universe. We found that the standard Friedmann equation will not be changed when the scalar field is in the potential energy dominated era. However, in the kinetic energy dominated era, the standard Friedmann equation will be modified and in the case of closed and flat universe, the Modified Friedmann equation will automatically require that the initial kinetic energy density of the scalar field must be in sub-Planckian scale.Comment: 11 pages, no figures. Accepted by Class.Quant.Grav.v2:References adde

    Consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday

    Full text link
    We discuss the modified gravity which includes negative and positive powers of the curvature and which provides the gravitational dark energy. It is shown that in GR plus the term containing negative power of the curvature the cosmic speed-up may be achieved, while the effective phantom phase (with ww less than -1) follows when such term contains the fractional positive power of the curvature. The minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fliud may describe the (effective phantom) dark energy. The account of R2R^2 term (consistent modified gravity) may help to escape of cosmic doomsday.Comment: LaTeX file, 9 pages, based on the talk given by S.D. Odintsov (Int. Conference Mathematical Methods in Physics, Rio de Janeiro, Augest, 2004), to appear in CQG, Letter

    Palatini formulation of the R−1R^{-1}modified gravity with an additionally squared scalar curvature term

    Full text link
    In this paper by deriving the Modified Friedmann equation in the Palatini formulation of R2R^2 gravity, first we discuss the problem of whether in Palatini formulation an additional R2R^2 term in Einstein's General Relativity action can drive an inflation. We show that the Palatini formulation of R2R^2 gravity cannot lead to the gravity-driven inflation as in the metric formalism. If considering no zero radiation and matter energy densities, we obtain that only under rather restrictive assumption about the radiation and matter energy densities there will be a mild power-law inflation a(t)∌t2a(t)\sim t^2, which is obviously different from the original vacuum energy-like driven inflation. Then we demonstrate that in the Palatini formulation of a more generally modified gravity, i.e., the 1/R+R21/R+R^2 model that intends to explain both the current cosmic acceleration and early time inflation, accelerating cosmic expansion achieved at late Universe evolution times under the model parameters satisfying αâ‰ȘÎČ\alpha\ll\beta.Comment: 14 pages, accepted for publication by CQ

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom
    corecore