309 research outputs found
Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights
Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-speciïŹc carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. Frutapin (FTP) is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically-active recombinant FTP in E. coli BL21, optimizing conditions with the best set yielding >40 mg/L culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 ”g/mL of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained and diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Ă
, respectively. The best solution showed four monomers per asymmetric unit. Molecular Dynamics simulation suggested FTP displays higher affinity for mannose than glucose. Cell studies revealed FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/mL and also capable of stimulating cell migration at 50 ”g/mL. In conclusion, our optimized expression system allowed high amounts of correctly-folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example, in wound healing and tissue regeneration
Performance indicators for clinical practice management in primary care in Portugal : consensus from a Delphi study
Early OnlineBackground: Performance indicators assessing the quality of medical care and linked to pay for performance may cause disagreement. Portuguese indicators included in recent health care reform are controversial. Objectives: To obtain consensus from opinion leaders in family medicine regarding the performance indicators for practice management used in the evaluation of Family Health Units in Portugal. Methods: Eighty-nine specialists in primary care were invited to answer the following question in an online Delphi study: 'Which performance indicators should be assessed regarding the organization and management of clinical practice in primary care in Portugal?' A Likert scale was used to evaluate validity, reliability, feasibility and sensitivity to change. Twenty-seven experts participated in the second round and achieved a high degree of consensus. Eight categories were created for analysis. Results: The experts suggested the use of existing indicators as well as new indicators. Thirty-nine indicators suggested by the experts are currently in use in Portugal. The assessment of the number of clinical acts performed, the number of administrative acts, and evaluation of the clinical demographic profile achieved a high degree of consensus. The expert panel suggested fifty new indicators. Five categories of these new indicators had a high degree of consensus, and three categories had a low degree of consensus. Conclusion: The expert panel recommended that performance indicators of practice management should first assess the quantity of clinical and administrative activities undertaken. These indicators must take into account the human and financial resources available to the clinic and its demographic context
Optimizing enzymatic dyeing of wool and leather
This work reports on the environmental friendly enzymatic dyeing of wool and leather performed at low temperature and mild pH conditions without any dyeing auxiliaries. The substrates have been dyed with âin situâ generated pigment by means of laccase-catalyzed oxidative coupling of dye modifier 2,2âČ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and dye precursor 1,3-benzenediol in a batchwise process. The process reaction variables (laccase, precursor and modifier concentrations, temperature and dyeing time) were optimized by response surface methodology using an appropriate experimental design. The temperature, precursor concentration, interaction between precursor and modifier and time are the most important factors in the dyeing process. The best-optimized wool dyeing conditions (2 h reaction time, 50 ÎŒl laccase (0.1 U), 500 mM precursor, 10 mM modifier at 40 °C) were then successfully applied onto leather material. The enzymatic-dyeing optimized process can be successfully performed on wool and leather at low temperature and mild pH obtaining different hues and depths of shades by varying the modifier concentration and time. The colouring enzymatic system has a good reusability (which has a huge advantage in terms of cost reduction) and washing durability and is comparable in terms of fastness properties to the traditional dyeing process for both wool and leather.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for funding the project UID/CTM/00264/2019 and A. Zille contract IF/00071/2015
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
Tonic Shock Induces Detachment of Giardia lamblia
The single-celled organism Giardia lamblia colonizes the small intestine of a wide variety of hosts, including humans. Giardiasis infections can cause severe gastrointestinal symptoms and pose a major health concern in the developing world. Giardia are known to attach robustly to a variety of surfaces, but the conditions that influence this attachment are not known. In this study, we examined the behavior of attached Giardia parasites exposed to rapid changes in solution properties, like those Giardia might encounter in the intestine. After systematically varying media concentration and composition, we found that only one solution property caused rapid detachment of Giardia cells: tonicity, which is a measure of the total concentration of solutes in the solution that are unable to pass through a semi-permeable membrane (here, the cell membrane of Giardia). We found similar results for Giardia initially attached to monolayers of intestinal cells. Giardia cells remaining attached after a change in tonicity are able to adapt to the change, highlighting the general ability of this organism to weather normal changes in the intestinal environment. We propose that Giardia's susceptibility to large changes in tonicity could be explored as a possible new route for treatment of giardiasis
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
Participation of Actin on Giardia lamblia Growth and Encystation
BACKGROUND:Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. METHODOLOGY AND PRINCIPAL FINDINGS:By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of fluorescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). CONCLUSIONS AND SIGNIFICANCE:All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression
Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces
Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined âsuction-basedâ mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing âhydrodynamic modelâ of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is important for positioning and orienting trophozoites prior to attachment. Drugs affecting flagellar motility may result in lower levels of attachment by indirectly limiting the number of parasites that can position the ventral disc properly against a surface and against peristaltic flow
Microbial Patterns Signaling via Toll-Like Receptors 2 and 5 Contribute to Epithelial Repair, Growth and Survival
Epithelial cells (ECs) continuously interact with microorganisms and detect their presence via different pattern-recognition receptors (PRRs) including Toll-like receptors (TLRs). Ligation of epithelial TLRs by pathogens is usually associated with the induction of pro-inflammatory mediators and antimicrobial factors. In this study, using human airway ECs as a model, we found that detection of microbial patterns via epithelial TLRs directly regulates tissue homeostasis. Staphylococcus aureus (S. aureus) and microbial patterns signaling via TLR2 and TLR5 induce a set of non-immune epithelial responses including cell migration, wound repair, proliferation, and survival of primary and cancerous ECs. Using small interfering RNA (siRNA) gene targeting, receptor-tyrosine kinase microarray and inhibition studies, we determined that TLR and the epidermal growth factor receptor (EGFR) mediate the stimulating effect of microbial patterns on epithelial repair. Microbial patterns signaling via Toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. This effect is independent of hematopoietic and other cells as well as inflammatory cytokines suggesting that epithelia are able to regulate their integrity in an autonomous non-inflammatory manner by sensing microbes directly via TLRs
- âŠ