39 research outputs found

    A laboratory based system for Laue micro x-ray diffraction

    Get PDF
    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 mum beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the"knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt percent Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis (37 References)

    Fabrication and characterization of a new high density Sc/Si multilayer sliced grating

    Get PDF
    State of the art soft x-ray spectroscopy techniques like Resonant Inelastic X-ray Scattering (RIXS) require diffraction gratings which can provide extremely high spectral resolution of 105-106. This problem may be addressed with a sliced multilayer grating with an ultra-high groove density (up to 50,000 mm-1) proposed in the recent publication [Voronov, D. L., Cambie, R., Feshchenko, R. M., Gullikson, E., Padmore, H. A., Vinogradov, A. V., Yashchuk, V. V., Proc. SPIE 6705, 67050E (2007)]. It has been suggested to fabricate such a grating by deposition of a soft x-ray multilayer on a substrate which is a blazed saw-tooth grating (echellette) with low groove density. Subsequent polishing applied to the coated grating removes part of the coating and forms an oblique-cut multiline structure that is a sliced multilayer grating. The resulting grating has a short-scale periodicity of lines (bilayers), which is defined by the multilayer period and the oblique-cut angle. We fabricated and tested a Sc/Si multilayer sliced grating suitable for EUV applications, which is a first prototype based on the suggested technique. In order to fabricate an echellette substrate, we used anisotropic KOH etching of a Si wafer. The etching regime was optimized to obtain smooth and flat echellette facets. A Sc/Si multilayer was deposited by dc-magnetron sputtering, and after that it was mechanically polished using a number of diamond pastes. The resulting sliced grating prototype with ~;;270 nm line period has demonstrated a dispersive ability in the 41-49 nm photon wavelength range with a diffraction efficiency of ~;;7percent for the optimized 38th order assigned to the echellette grating of 10 mu m period

    Performance of the upgraded LTP-II at the ALS Optical Metrology Laboratory

    Get PDF
    The next generation of synchrotrons and free electron laser facilities requires x-ray optical systems with extremely high performance, generally of diffraction limited quality. Fabrication and use of such optics requires adequate, highly accurate metrology and dedicated instrumentation. Previously, we suggested ways to improve the performance of the Long Trace Profiler (LTP), a slope measuring instrument widely used to characterize x-ray optics at long spatial wavelengths. The main way is use of a CCD detector and corresponding technique for calibration of photo-response non-uniformity [J. L. Kirschman, et al., Proceedings of SPIE 6704, 67040J (2007)]. The present work focuses on the performance and characteristics of the upgraded LTP-II at the ALS Optical Metrology Laboratory. This includes a review of the overall aspects of the design, control system, the movement and measurement regimes for the stage, and analysis of the performance by a slope measurement of a highly curved super-quality substrate with less than 0.3 microradian (rms)slope variation
    corecore