4 research outputs found

    III-Nitride Nanowires: Future Prospective for Photovoltaic Applications

    Get PDF
    Photovoltaic (PV) technology could be a promising candidate for clean and green source of energy. The nanowire technology provides extra mileage over planar solar cells in every step from photon absorption to current generation. Indium Gallium Nitride (InxGa1-xN) is a recently revised material with such a bandgap to absorb nearly whole solar spectrum to increase the conversion efficiency copiously. One of the major technological challenge is in-built polarization charges. This chapter highlights the basic advantageous properties of InxGa 1−xN materials, its growth technology and state-of-the-art application towards PV devices. The most important challenges that remain in realizing a high-efficiency InxGa 1−xN PV device are also discussed. III-Nitride nanowires are also explored in detail to overcome the challenges. Finally, conclusions are drawn about the potential and future aspect of InxGa 1−xN material based nanowires towards terrestrial as well as space photovoltaic applications

    Numerical study of nSi and nSiGe solar cells: Emerging microstructure nSiGe cell achieved the highest 8.55% efficiency

    Get PDF
    This paper reports about the comparative study of nSi and nSiGe microstructure materials opto-electrical energy conversion prospect. The significance of nSiGe thin active laye in organic-inorganic heterojunction (HJ) solar cell efficiency progression is illustrated. Transparent and carrier selective top contact purposes p-type un-doped organic materials are promising for low processing cost n-Si HJ solar cell. Near infrared band absorption enrichment by Ge inclusion in n-Si thin active layer is a new design approach. p-PTAA/n-Si PV device modelling and it electrical properties are investigated by using SCAPS simulator. Thin Si active layer solar cell is commercially important. However, thin layer absorption related technological shortcoming overcoming approaches 10% Ge content impact is studied in this work. Moreover, SiO2 nanomaterial passivated p-PTAA/SiO2/ n-SiGe and p-PTAA/SiO2/n-Si models active layer thickness and operating temperature effects have also been studied. The current-voltage (J-V) characteristics analysis is realized that nSiGe cell is potential for the progression of current density and efficiency. SiO2 nanomaterial passivated 3 μm SiGe microstructure cell is realized promising to increase 48.1 mA/cm2 of current density. The highest 8.55% efficiency is achieved for 2 nm SiO2 passivation and 20 nm of PTAA emitter
    corecore