200 research outputs found

    Muon (g-2) from the bulk neutrino field in a warped extra dimensional model

    Full text link
    In the Randall-Sundrum model, a bulk neutrino field in the 5-dimensional space-time can give rise to tiny Dirac masses to neutrinos. In such a scenario, we have computed the contribution of the bulk neutrino field to the anomalous magnetic moment (g−2)μ(g-2)_\mu of muon. We have computed this contribution in the 't Hooft-Feynman gauge and have found that the contribution has the right sign to fit the current discrepancy between the experiment and the standard model value of (g−2)μ(g-2)_\mu. We have also studied possible constraints on the model parameters by including contributions to (g−2)μ(g-2)_\mu from other sources such as bulk gravitons.Comment: 18 pages, 3 figures, 2 tables, minor changes, this version has been published in Physical Review

    Bulk Higgs and Gauge fields in a multiply warped braneworld model

    Full text link
    We readdress the problems associated with bulk Higgs and the gauge fields in a 5-dimensional Randall-Sundrum model by extending the model to six dimensions with double warping along the two extra spatial dimensions. In this 6-dimensional model we have a freedom of two moduli scales as against one modulus in the 5-dimensional model. With a little hierarchy between these moduli we can obtain the right magnitude for WW and ZZ boson masses from the Kaluza-Klein modes of massive bulk gauge fields where the spontaneous symmetry breaking is triggered by bulk Higgs . We also have determined the gauge couplings of the standard model fermions with Kaluza-Klein modes of the gauge fields. Unlike the case of 5-dimensional model with a massless bulk gauge field, here we have shown that the gauge couplings and the masses of the Kaluza-Klein gauge fields satisfy the precision electroweak constraints and also obey the Tevatron bounds.Comment: 15 Pages, Late

    Randall-Sundrum with Kalb-Ramond field: return of the hierarchy problem?

    Get PDF
    We show that when the antisymmetric Kalb-Ramond field is included in the Randall-Sundrum scenario, although the hierarchy problem can be solved, it requires an extreme fine tuning of the Kalb-Ramond field (about 1 part in 106210^{62}). We interpret this as the return of the problem in disguise. Further, we show that the Kalb-Ramond field induces a small negative cosmological constant on the visible brane.Comment: 8 pages, latex, 4 figures. Contributed talk at `Recent Developments in Gravity' (NEB XII), Nafplion, Greece, 29 June 200

    Spacetime torsion and parity violation: a gauge invariant formulation

    Get PDF
    The possibility of parity violation through spacetime torsion has been explored in a scenario containing fields with different spins. Taking the Kalb-Ramond field as the source of torsion, an explicitly parity violating U(1)EMU(1)_{EM} gauge invariant theory has been constructed by extending the KR field with a Chern-Simons term.Comment: 4 pages, RevTe

    Living on the edge in a spacetime with multiple warping

    Get PDF
    The Randall-Sundrum warped braneworld model is generalised to six and higher dimensions such that the warping has a non-trivial dependence on more than one dimension. This naturally leads to a brane-box like configuration alongwith scalar fields with possibly interesting cosmological roles. Also obtained naturally are two towers of 3 branes with mass scales clustered around either of Planck scale and TeV scale. Such a scenario has interesting phenomenological consequences including an explanation for the observed hierarchy in the masses of standard model fermions.Comment: 14 Pages, Latex, 2 figures, To appear in Phys.Rev.

    Split supersymmetry and the role of a light fermion in a supergravity-based scenario

    Full text link
    We investigate split supersymmetry (SUSY) within a supergravity framework, where local SUSY is broken by the F-term of a hidden sector chiral superfield X. With reasonably general assumptions, we show that the fermionic component of X will always have mass within a Tev. Though its coupling to the observable sector superfields is highly suppressed in Tev scale SUSY, we show that it can be enhanced by many orders in split SUSY, leading to its likely participation in accelerator phenomenology.We conclude with a specific example of such a scenario in a string based supergravity model.Comment: 12 Pages, Latex, Title changed, version thoroughly revise

    Two-loop neutrino masses with large R-parity violating interactions in supersymmetry

    Get PDF
    We attempt to reconcile large trilinear R-parity violating interactions in a supersymmetric (SUSY) theory with the observed pattern of neutrino masses and mixing. We show that, with a restricted number of such interaction terms with the λ′\lambda'-type couplings in the range (0.1-1.0), it is possible to forbid one-loop contributions to the neutrino mass matrix. This is illustrated with the help of a `working example' where an econnomic choice of SUSY parameters is made, with three non-vanishing and `large' R-parity violating terms in the superpotential. The two-loop contributions in such a case can not only generate the masses in the requisite order but can also lead us to specific allowed regions of the parameter space.Comment: Revised version, 25 pages, 16 figure
    • …
    corecore