45 research outputs found

    Variation in host susceptibility and infectiousness generated by co-infection: the myxoma–Trichostrongylus retortaeformis case in wild rabbits

    Get PDF
    One of the conditions that can affect host susceptibility and parasite transmission is the occurrence of concomitant infections. Parasites interact directly or indirectly within an individual host and often these interactions are modulated by the host immune response. We used a free-living rabbit population co-infected with the nematode Trichostrongylus retortaeformis, which appears to stimulate an acquired immune response, and the immunosuppressive poxvirus myxoma. Modelling was used to examine how myxoma infection alters the immune-mediated establishment and death/expulsion of T. retortaeformis, and consequently affects parasite intensity and duration of the infection. Simulations were based on the general TH1–TH2 immunological paradigm that proposes the polarization of the host immune response towards one of the two subsets of T helper cells. Our findings suggest that myxoma infections contribute to alter host susceptibility to the nematode, as co-infected rabbits showed higher worm intensity compared with virus negative hosts. Results also suggest that myxoma disrupts the ability of the host to clear T. retortaeformis as worm intensities were consistently high and remained high in old rabbits. However, the co-infection model has to include some immune-mediated nematode regulation to be consistent with field data, indicating that the TH1–TH2 dichotomy is not complete. We conclude that seasonal myxoma outbreaks enhance host susceptibility to the nematode and generate highly infected hosts that remain infectious for a longer time. Finally, the virus–nematode co-infection increases heterogeneities among individuals and potentially has a large effect on parasite transmission

    The Common Swift Louse Fly, Crataerina pallida: An Ideal Species for Studying Host-Parasite Interactions

    Get PDF
    Little is known of the life-history of many parasitic species. This hinders a full understanding of host-parasitic interactions. The common swift louse fly, Crataerina pallida Latreille (Diptera: Hippoboscidae), an obligate haematophagous parasite of the Common Swift, Apus apus Linnaeus 1758, is one such species. No detrimental effect of its parasitism upon the host has been found. This may be because too little is known about C. pallida ecology, and therefore detrimental effects are also unknown. This is a review of what is known about the life-history of this parasite, with the aim of promoting understanding of its ecology. New, previously unreported observations about C. pallida made from personal observations at a nesting swift colony are described. Unanswered questions are highlighted, which may aid understanding of this host-parasite system. C. pallida may prove a suitable model species for the study of other host-parasite relationships

    Helminths Arthropods and Protozoa of Domesticated Animals (monnig)

    No full text
    17cmx25cm, 823hlm:illu

    HELMINTHS, ARTHROPODS & PROTOZOA OF DOMESTICATED ANIMALS

    No full text
    xix, 824 hlm.; 28 cm : ILLU

    Lymphoid cell kinetics in guinea pigs infected with Trichostrongylus colubriformis: Tritiated thymidine uptake in gut and allied lymphoid tissue, humoral IgE and hemagglutinating antibody responses, delayed hypersensitivity reactions, and in vitro lymphocyte transformations during primary infections

    No full text
    The kinetics of the lymphocyte responses of Trichostrongylus colubriformis-infected and normal guinea pigs were measured by the in vivo uptake of tritiated thymidine either as dpm H/mg tissue or as the percentage change in [H] -labeled lymphoblasts in autoradiographs of tissue impression smears and sections. The lymphoid response was predominantly a local one centering on the infected area of the small intestine. The greatest lymphocyte reactions as assessed by counts of labeled lymphoblasts occurred in the Peyer's patches and mesenteric lymph nodes where the peak responses took place 11 and 6 days after infection, respectively. The local nature of the responses was exemplified by the fact that the mesenteric lymph nodes of the anterior small intestine showed a peak response on the sixth day but the response from the posterior small intestine peaked 7 days later. A similar but less dramatic relationship existed among the Peyer's patches. In addition no labeled lymphoblast response was elicited in the inguinal lymph nodes or cecal lymphoid patches throughout the infection and the first increased responsiveness of the spleen did not take place until after Day 13, by which time the lymphoid proliferations associated with the infected intestine had subsided. Initially, the spleen showed a marked depletion of labeled blast cells during the first 7 days of the infection. This was taken as indicating at the time the infection was being established the export of cells capable of transformation in response to parasite antigen. This was supported by the observation that large numbers of phytohemagglutinin responsive lymphocytes were found in the peripheral circulation at this time. The in vitro responsiveness of peripheral lymphocytes to T. colubriformis antigen was also studied. Positive lymphocyte transformations first occurred 6 days after infection but thereafter declined to the normal level by Day 13; the peak transformation ratio was found 25 days after infection but by Day 38 it had declined to a low but persistently positive level. There was a correlation between the circulation of specifically sensitized cells, probably of thymic origin, IgE antibody titers, and the development of positive dermal delayed hypersensitivity reactions in infected guinea pigs, suggesting a close relationship among these three immunological phenomena. All lymphoblast responses in Peyer's patches, mesenteric lymph nodes, and lamina propria of the intestine were completed before the immune elimination of the parasite commenced 10 days after infection. During the first 10 days of infection specifically sensitized lymphocytes appeared and disappeared from the circulation. The loss of circulating sensitized lymphocytes at the time immune elimination of the parasite was taking place in the gut suggested that the sensitized cells were "homing-in" on the local area of infection. After the immune elimination of the parasite had commenced, the level of sensitized lymphocytes and IgE antibodies then increased rapidly in the blood. Evidence from the kinetics of the hemagglutinating antibodies indicated that stage specific antigens occur in T. colubriformis
    corecore