11 research outputs found
Low-density lipoprotein concentration in the normal left coronary artery tree
<p>Abstract</p> <p>Background</p> <p>The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL) site concentration in the entire normal human 3D tree of the LCA.</p> <p>Methods</p> <p>A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall.</p> <p>Results</p> <p>High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA) tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions.</p> <p>Conclusion</p> <p>The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the sites of lowest WSS. The degree of elevation in luminal surface LDL concentration is mostly affected from the water infiltration velocity at the vessel wall. The paths of the velocities in proximity to the endothelium might be the most important factor for the elevated LDL concentration.</p
Recommended from our members
Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery
The capabilities and limitations of various molecular viscosity models, in the left coronary arterial tree, were analyzed via: molecular viscosity, local and global non-Newtonian importance factors, wall shear stress (WSS) and wall shear stress gradient (WSSG). The vessel geometry was acquired using geometrically correct 3D intravascular ultrasound (3D IVUS). Seven non-Newtonian molecular viscosity models, plus the Newtonian one, were compared. The WSS distribution yielded a consistent LCA pattern for nearly all non-Newtonian models. High molecular viscosity, low WSS and low WSSG values occurred at the outer walls of the major bifurcation in proximal LCA regions. The Newtonian blood flow was found to be a good approximation at mid- and high-strain rates. The non-Newtonian Power Law, Generalized Power Law, Carreau and Casson and Modified Cross blood viscosity models gave comparable molecular viscosity, WSS and WSSG values. The Power Law and Walburn-Schneck models over-estimated the non-Newtonian global importance factor I(G) and under-estimated the area averaged WSS and WSSG values. The non-Newtonian Power Law and the Generalized Power Law blood viscosity models were found to approximate the molecular viscosity and WSS calculations in a more satisfactory way
Recommended from our members
Molecular viscosity in the normal left coronary arterial tree. Is it related to atherosclerosis?
The purpose of this study is to elucidate, probably for the first time, the distribution of molecular viscosity in the entire left coronary artery (LCA) tree. The governing mass, momentum, and energy flow equations were solved by using a previously validated 3-dimensional numerical (finite-element analysis) code. High-molecular-viscosity regions occur at bifurcations in regions opposite the flow dividers, which are anatomic sites predisposed for atherosclerotic development. Furthermore, high-molecular-viscosity values appear in the proximal regions of the LCA tree, where atherosclerosis frequently occurs. The effect of blood flow resistance, due to increased blood viscosity, gives rise to increased contact time between the atherogenic particles of the blood and the endothelium, probably promoting atherosclerosis. Observations suggest that, whole viscosity distribution within the coronary artery tree may represent a risk factor for the resulting atherosclerosis. This distribution can become a possible tool for the location of atherosclerotic lesions
Recommended from our members
Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis
OBJECTIVE: To investigate the wall shear stress oscillation in a normal human left coronary artery bifurcation computational model by applying non-Newtonian blood properties and phasic flow. METHODS: The three-dimensional geometry of the investigated model included the left main coronary artery along with its two main branches, namely the left anterior descending and the left circumflex artery. For the computational analyses a pulsatile non-Newtonian flow was applied. To evaluate the cyclic variations in wall shear stress, six characteristic time-points of the cardiac cycle were selected. The non-Newtonian wall shear stress variation was compared with the Newtonian one. RESULTS: The wall shear stress varied remarkably in time and space. The flow divider region encountered higher wall shear stress values than the lateral walls throughout the entire cardiac cycle. The wall shear stress exhibited remarkably lower and oscillatory values in systole as compared with that in diastole in the entire bifurcation region, especially in the lateral walls. Although the Newtonian wall shear stress experienced consistently lower values throughout the entire cardiac cycle than the non-Newtonian wall shear stress, the general pattern of lower wall shear stress values at the lateral walls, particularly during systole, was evident regardless of the blood properties. CONCLUSIONS: The lateral walls of the bifurcation, where low and oscillating wall shear stress is observed, are more susceptible to atherosclerosis. The systolic period, rather than the diastolic one, favors the development and progression of atherosclerosis. The blood viscosity properties do not seem to qualitatively affect the spatial and temporal distribution of the wall shear stress