40 research outputs found

    Microwave assisted biodiesel production using heterogeneous catalysts

    Full text link
    As a promising renewable fuel, biodiesel has gained worldwide attention to replace fossil-derived mineral diesel due to the threats concerning the depletion of fossil reserves and ecological constraints. Biodiesel production via transesterification involves using homogeneous, heterogeneous and enzymatic catalysts to speed up the reaction. The usage of heterogeneous catalysts over homogeneous catalysts are considered more advantageous and cost-effective. Therefore, several heterogeneous catalysts have been developed from variable sources to make the overall production process economical. After achieving optimum performance of these catalysts and chemical processes, the research has been directed in other perspectives, such as the application of non-conventional methods such as microwave, ultrasonic, plasma heating etc, aiming to enhance the efficiency of the overall process. This mini review is targeted to focus on the research carried out up to this date on microwave-supported heterogeneously catalysed biodiesel production. It discusses the phenomenon of microwave heating, synthesis techniques for heterogeneous catalysts, microwave mediated transesterification reaction using solid catalysts, special thermal effects of microwaves and parametric optimisation under microwave heating. The review shows that using microwave technology on the heterogeneously catalysed transesterification process greatly decreases reaction times (5–60 min) while maintaining or improving catalytic activity (>90%) when compared to traditional heating

    Leverage of Environmental Pollutant Crump Rubber on the Dry Sliding Wear Response of Epoxy Composites.

    Full text link
    The effect of crump rubber on the dry sliding wear behavior of epoxy composites is investigated in the present study. Wear tests are carried out for three levels of crump rubber (10, 20, and 30 vol.%), normal applied load (30, 40, and 50 N), and sliding distance (1, 3, and 5 km). The wear behavior of crump rubber-epoxy composites is investigated against EN31 steel discs. The hybrid mathematical approach of Taguchi-coupled Grey Relational Analysis (GRA)-Principal Component Analysis (PCA) is used to examine the influence of crump rubber on the tribological response of composites. Mathematical and experimental results reveal that increasing crump rubber content reduces the wear rate of composites. Composites also show a significant decrease in specific wear values at higher applied loads. Furthermore, the coefficient of friction also shows a decreasing trend with an increase in crump rubber content, indicating the effectiveness of reinforcing crump rubber in a widely used epoxy matrix. Analysis of Variance (ANOVA) results also reveal that the crump rubber content in the composite is a significant parameter to influence the wear characteristic. The post-test temperature of discs increases with an increase in the applied load, while decreasing with an increase in filler loading. Worn surfaces are analyzed using scanning electron microscopy to understand structure-property correlations. Finally, existing studies available in the literature are compared with the wear data of the present study in the form of a property map

    Production and utilization aspects of waste cooking oil based biodiesel in Pakistan

    Full text link
    Excessive fuel demand thrusts the Pakistani government to import large volumes of fuel from foreign sources, creating adverse effects on the country's economy. Therefore, exploring an alternative to fossil fuels is unavoidable. The option of environmentally friendly fuel like biodiesel produced from indigenous waste is an additional bonus for the populous developing country like Pakistan where likelihood of waste generation is huge. There exists a potential option for sustainable biodiesel production utilizing excessive waste cooking oil available in the country which otherwise is an ecological burden. The present work is focused to sturdily vindicate the appropriateness of waste cooking oil-based biodiesel generation and utilization in Pakistan through SWOT-AHP, TOWS and PESTLE analysis. The prioritization of SWOT through AHP in view of experts’ perception displayed the strengths and opportunities in highest group priority values (Strengths: 0.51, Opportunities: 0.29). Furthermore, TOWS analysis suggests promising strategies for the sustainable implementation of commercial aspect of waste oil-based biodiesel in Pakistan. Political, Economic, Social, Technological, Legal and Environmental (PESTLE) analysis favors the strengths and opportunities factors of SWOT and TOWS strategies for the application of waste cooking oil based biodiesel in country. At the end, regional recommendations have been provided for the implementation of biodiesel production scenario in country

    Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology

    Get PDF
    © 2020 by the authors. This research work focuses on investigating the lubricity and analyzing the engine characteristics of diesel-biodiesel blends with fuel additives (titanium dioxide (TiO2) and dimethyl carbonate (DMC)) and their effect on the tribological properties of a mineral lubricant. A blend of palm-sesame oil was used to produce biodiesel using ultrasound-assisted transesterification. B30 (30% biodiesel + 70% diesel) fuel was selected as the base fuel. The additives used in the current study to prepare ternary fuel blends were TiO2 and DMC. B30 + TiO2 showed a significant reduction of 6.72% in the coefficient of friction (COF) compared to B30. B10 (Malaysian commercial diesel) exhibited very poor lubricity and COF among all tested fuels. Both ternary fuel blends showed a promising reduction in wear rate. All contaminated lubricant samples showed an increment in COF due to the dilution of combustible fuels. Lub + B10 (lubricant + B10) showed the highest increment of 42.29% in COF among all contaminated lubricant samples. B30 + TiO2 showed the maximum reduction (6.76%) in brake-specific fuel consumption (BSFC). B30 + DMC showed the maximum increment (8.01%) in brake thermal efficiency (BTE). B30 + DMC exhibited a considerable decline of 32.09% and 25.4% in CO and HC emissions, respectively. The B30 + TiO2 fuel blend showed better lubricity and a significant improvement in engine characteristics

    Investigation of flexural properties of epoxy composite by utilizing graphene nanofillers and natural hemp fibre reinforcement

    Full text link
    This study aims to determine the optimum reinforcement required to attain the best combination of flexural strength of modified green composites (graphene oxide + hemp fibre reinforced epoxy composites) for potential use in structural applications. An attempt was also made for the combination of graphene and hemp fibres to enhance load-bearing ability. The infusion of hemp and graphene was made by the weight of the base matrix (epoxy composite). Results showed that graphene reinforcement at 0.4 wt.% of matrix showed load-sustaining capacity of 0.76 kN or 760 MPa. In the case of hemp fibre reinforcement at 0.2 wt.% of the matrix, infusion showed enhanced load-bearing ability (0.79 kN or 790 MPa). However, the combination of graphene (0.1 wt.% graphene nanofillers) and hemp (5 wt.% hemp fibre) indicated a load-sustaining ability of 0.425 kN or 425 MPa, whereas maximum deflection was observed for specimen with hemp 7.5 % + graphene 0.2 % with 1.9 mm. Graphene addition to the modified composites in combination with natural fibres showed promising results in enhancing the mechanical properties under study. Moreover, graphene-modified composites exhibited higher thermal resistance compared to natural fibre reinforced composites. However, when nanofiller reinforcement exceeded a threshold value, the composites exhibited reduced flexural strength as a result of nanofiller agglomeration

    Artificial neural network led optimization of oxyhydrogen hybridized diesel operated engine

    Full text link
    The prevailing massive exploitation of conventional fuels has staked the energy accessibility to future generations. The gloomy peril of inflated demand and depleting fuel reservoirs in the energy sector has supposedly instigated the urgent need for reliable alternative fuels. These very issues have been addressed by introducing oxyhydrogen gas (HHO) in compression ignition (CI) engines in various flow rates with diesel for assessing brake-specific fuel consumption (BSFC) and brake thermal efficiency (BTE). The enrichment of neat diesel fuel with 10 dm3/min of HHO resulted in the most substantial decrease in BSFC and improved BTE at all test speeds in the range of 1000– 2200 rpm. Moreover, an Artificial Intelligence (AI) approach was employed for designing an ANN performance-predicting model with an engine operating on HHO. The correlation coefficients (R) of BSFC and BTE given by the ANN predicting model were 0.99764 and 0.99902, respectively. The mean root errors (MRE) of both parameters (BSFC and BTE) were within the range of 1%–3% while the root mean square errors (RMSE) were 0.0122 kg/kWh and 0.2768% for BSFC and BTE, respec-tively. In addition, ANN was coupled with the response surface methodology (RSM) technique for comprehending the individual impact of design parameters and their statistical interactions gov-erning the output parameters. The R2 values of RSM responses (BSFC and BTE) were near to 1 and MRE values were within the designated range. The comparative evaluation of ANN and RSM predicting models revealed that MRE and RMSE of RSM models are also well within the desired range but to be outrightly accurate and precise, the choice of ANN should be potentially endorsed. Thus, the combined use of ANN and RSM could be used effectively for reliable predictions and effective study of statistical interactions

    Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine

    Full text link
    The present study examines the effect of silicon dioxide (SiO2) nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. The morphology of nano-additives was studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The Ultrasonication process was used for the homogeneous blending of nano-additives with biodiesel, while surfactant was used for the stabilisation of nano-additives. The physicochemical properties of pure and blended fuel samples were measured as per ASTM standards. The performance and emissions characteristics of different fuel samples were measured at different loading conditions. It was found that the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) increased by 3.48–6.39% and 5.81–9.88%, respectively, with the addition of SiO2 nano-additives. The carbon monoxide (CO), hydrocarbon (HC) and smoke emissions for nano-additive added blends were decreased by 1.9–17.5%, 20.56–27.5% and 10.16–23.54% compared to SBME25 fuel blends.</jats:p

    Effect of alcoholic and nano-particles additives on tribological properties of diesel–palm–sesame–biodiesel blends

    Full text link
    This study focused on evaluating the lubricity of diesel–biodiesel fuel with oxygenated alcoholic and nano-particle additives. Fuel injection system lubrication depended primarily on the fuel used in the diesel engine. Palm–sesame oil blend was used to produce biodiesel using the ultrasound-assisted technique. B30 fuel sample as a base fuel was blended with fuel additives in different proportions prior to tribological behavior analysis. The lubricity of fuel samples measured using HFRR in accordance with the standard method ASTM D6079. All tested fuels’ Tribological behavior examined through worn steel balls and plates using scanning electron microscopy (SEM) to assess wear scar diameter and surface morphology. During the test run, the friction coefficient was measured directly by the HFRR tribometer system. The results exhibited that B10 (diesel) had a very poor coefficient of friction and wear scar diameter, among other tested fuels. The addition of oxygenated alcohol (ethanol) as a fuel additive in the B30 fuel sample decreased the lubricity of fuel and increased the wear and friction coefficient, among other fuel additives. B30 with DMC showed the least wear scar diameter among all tested fuels. B30 with nanoparticle TiO2 exhibited the best results with the least wear scar diameter and lowest friction coefficient among all other fuel samples. B30+DMC demonstrated significant improvement in engine performance (BTE) and carbon emissions compared to different tested samples. B30+TiO2 also showed considerable improvement in engine characteristics

    Effect of primary and secondary alcohols as oxygenated additives on the performance and emission characteristics of diesel engine

    Full text link
    The demand for renewable energy sources is gradually escalating due to the spontaneously growing population and global economic development. The access to fossil fuels is gradually declining due to the limited available reserves. Hence, renewable energy resources, technology choice, and energy policy are always being revised due to the modernization of society. Meanwhile, the liquid energy sources such as methyl ester from locally produced vegetable oils are readily accepted by many countries globally, although it is currently being blended (up to 20%) with diesel. Oxides of nitrogen are the most substantial emissions from diesel engines produced due to high combustion temperature. The addition of alcohol in the fuel reduces the NOx formation since alcohols have high latent heat of evaporation. The present study's primary purpose is to investigate the effect of different alcohol types on engine performance and emission characteristics. For this purpose, seven test fuels and neat diesel were used. The test fuels P20 (20% palm biodiesel with 70% neat diesel and 10% alcohol on a volume basis), D70P20E10, D70P20Pr10, D70P20B10, D70P20Pe10, D70P20H10 were prepared and tested on a single-cylinder, 4-stroke, DI-diesel engine at different speeds at 100 % load. The P20E10 ternary fuel blend illustrated the most practical combination of all the bioethanol-based blends, which considerably improves the BTE, BSFC and reduces NOxformation at high speed compared to other types of alcoholic fuel blends. Also, the P20E10 fuel blend improved the cloud point of neat diesel
    corecore