33 research outputs found

    The primary structure of the aspartate transcarbamylase region of the URA2 gene product in Saccharomyces cerevisiae. Features involved in activity and nuclear localization.

    Get PDF
    The yeast URA2 locus encodes a multifunctional protein which possesses the carbamylphosphate synthetase and aspartate transcarbamylase activities and which catalyzes the first two reactions of the pyrimidine pathway. We report here the nucleotide sequence of the central and the 3' region of this locus. The latter encodes that part of the multifunctional protein which has the aspartate transcarbamylase activity. The deduced amino acid sequence shows a high degree of homology with the known aspartate transcarbamylases of various organisms from Escherichia coli to mammals. The amino acid residues that have been shown to be involved in the catalytic site of the E. coli enzyme are all conserved suggesting that, in the more complex structure of the yeast protein, the catalytic sites are also located at subunit interfaces. There is also an important conservation of the amino acid pairs that, in E. coli, are implicated in intra- and interchain interactions. As well as the oligomeric structure suggested by these two features, the three-dimensional structure of the yeast enzyme must also be organized to account for the channeling of carbamylphosphate, from the carbamylphosphate synthetase catalytic site to that of aspartate transcarbamylase, and for the concomitant feedback inhibition of the two activities by the end product UTP. The URA2 gene product was shown to be localized in the nucleus. With the aim of identifying the regions that may be involved in this transport, we have determined by electron microscopy the subcellular distribution of aspartate transcarbamylase in three strains expressing different fragments of the URA2 locus. In the first strain the protein lacks 190 residues at the N terminus, but accumulates normally in the nucleus. In the second strain the protein lacks 382 residues in the central part and seems impaired in the nuclear transport process. In the third strain the 476-residue protein encoded by the 3' region of URA2 locus and catalyzing the aspartate transcarbamylase reaction is able by itself to migrate to and accumulate in the nucleus. This suggests that two regions are involved in the nuclear accumulation. On the basis of their conservation in analogous proteins of other eukaryotes and their similarity to sequences already identified as nuclear location signals, a sequence in the central region of the protein and two short sequences in the C-terminal region are good candidates for the nuclear location signal involved in the targeting of the URA2 product.comparative studyjournal article1989 May 15importe

    Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes

    Get PDF
    The Génolevures online database (http://cbi.labri.fr/Genolevures/ and http://genolevures.org/) provides exploratory tools and curated data sets relative to nine complete and seven partial genome sequences determined and manually annotated by the Génolevures Consortium, to facilitate comparative genomic studies of Hemiascomycete yeasts. The 2008 update to the Génolevures database provides four new genomes in complete (subtelomere to subtelomere) chromosome sequences, 50 000 protein-coding and tRNA genes, and in silico analyses for each gene element. A key element is a novel classification of conserved multi-species protein families and their use in detecting synteny, gene fusions and other aspects of genome remodeling in evolution. Our purpose is to release high-quality curated data from complete genomes, with a focus on the relations between genes, genomes and proteins

    Nucleotide sequence of the pyrimidine specific carbamoyl phosphate synthetase, a part of the yeast multifunctional protein encoded by the URA2 gene.

    No full text
    Yeast URA2 encodes a multifunctional carbamoyl phosphate synthetase-aspartate transcarbamylase of 220,000 molecular weight. We determined the nucleotide sequence of the 5' proximal part of the gene which is responsible for the glutamine amide transfer function of the carbamoyl phosphate synthetase activity. Alignment of the enzyme sequence derived from URA2 with sequences from Escherichia coli carA carB and yeast arginine-specific CP A1 CP A2 indicates that monofunctional and bifunctional carbamoyl phosphate synthetases are probably homologous. The URA2-derived enzyme organization is NH2-carbamoyl phosphate synthetase-aspartate transcarbamylase-CO2H.journal articleresearch support, non-u.s. gov't1987 Mayimporte

    Studies on transcription of the yeast URA2 gene.

    No full text
    The multifunctional protein carbamoylphosphate synthetase (CPSase)-aspartate transcarbamylase (ATCase) encoded by the URA2 gene catalyses the first two steps of the yeast pyrimidine pathway. An excess of the final product, the intracellular UTP (uridine triphosphate), inhibits both the transcription of the URA2 gene and the enzymatic activities. Results presented in this paper suggest that transcription of URA2 is negatively regulated (repression-derepression) and establish that this regulation is less efficient in the flow of the pyrimidine pathway than feedback inhibition.journal article1990 Octimporte

    The characterization of two new clusters of duplicated genes suggests a 'Lego' organization of the yeast Saccharomyces cerevisiae chromosomes.

    No full text
    The systematic sequencing of 42,485 bp of yeast chromosome VII (nucleotides 377948 to 420432) has revealed the presence of 27 putative open reading frames (ORFs) coding for proteins of at least 100 amino acids. The degree of redundancy observed is elevated since five of the 27 ORFs are duplications of a previously identified gene. These duplicated copies may be classified in two types of cluster organization. The first type includes genes sharing a significant level of identity in the amino acid sequences of their predicted protein product. They are recovered on two different chromosomes, transcribed in the same orientation and the distance between them is conserved. The second type of cluster is based on one gene unit tandemly repeated. This duplication is itself repeated elsewhere in the genome. The level of nucleic acid identity is high within the coding sequence and the non-coding region between the two repeats. In addition, the basic gene unit is recovered many times in the genome and is a component of a multigene family of unknown function. These organizations in clusters of genes suggest a 'Lego organization' of the yeast chromosomes, as recently proposed for the genome of plants (Moore, 1995). The sequence is deposited in the Yeast Genome Databank under Accession Number from Z72562 to Z72586.journal articleresearch support, non-u.s. gov't1997 Julimporte

    Reactivation of the ATCase domain of the URA2 gene complex: a positive selection method for Ty insertions and chromosomal rearrangements in Saccharomyces cerevisiae.

    No full text
    Genetic rearrangements such as deletions or duplications of DNA sequences are rarely detected in the yeast Saccharomyces cerevisiae. We have developed a screening system using the URA2 gene coding for the bi-functional CPSase-ATCase (carbamyl phosphate synthetase - aspartate transcarbamylase) to select positively for these kinds of events. Nonsense mutations in the CPSase region cause a complete loss of the ATCase activity because of their strong polar effect. Thirty-seven ATCase+ revertants were isolated from a strain containing three nonsense mutations in the proximal CPSase region. Genetic and structural analysis of the URA2 locus in these strains allowed us to characterize two major classes of revertants. In the first, an entire copy of a Ty transposon was found to be inserted in the CPSase coding domain. This event, which represents a new form of Ty-mediated gene activation was further analysed by mapping the Ty integration site in 26 strains. In a second class of revertants, we observed chromosomal rearrangements and, in particular, duplication of the ATCase region and its integration in a new chromosomal environment in which this sequence becomes active.journal articleresearch support, non-u.s. gov't1995 Mar 20importe

    Involvement of very short DNA tandem repeats and the influence of the RAD52 gene on the occurrence of deletions in Saccharomyces cerevisiae.

    No full text
    Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura(+) revertants of a particular ura2 mutant. Among 133 Ura(+) revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura(+) reversion rate was increased 4.2-fold in a rad52Delta strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Delta context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.journal articleresearch support, non-u.s. gov't2000 Octimporte

    Organization of specific genomic regions of Zygosaccharomyces rouxii and Pichia sorbitophila: comparison with Saccharomyces cerevisiae.

    No full text
    The genomes of Zygosaccharomyces rouxii and Pichia sorbitophila were partially explored. The genome of Z. rouxii CBS 732 consists of seven chromosomes with an approximate size of 1.0-2.75 Mb, 12.8 Mb in total. Five of the chromosomes were labelled with specific probes. Three Z. rouxii genomic DNA fragments were sequenced; all 10 ORFs found were without introns and they have homologues in S. cerevisiae. Gene order comparison revealed that the organization is partially conserved in both species. The genome of P. sorbitophila CBS 7064 consists of seven chromosomes with an approximate size of 1.0-2.9 Mb, 13.9 Mb in total. Three of the chromosomes were labelled with specific probes. The sequencing of a 5.2 kb genomic DNA fragment revealed three ORFs, but no conservation of their organization was found, although all of them have their respective homologues in S. cerevisiae. According to our results, the presence of two overlapping ORFs in S. cerevisiae (YJL107c-YJL108c) could be interpreted as the result of a frameshift mutation.comparative studyjournal articleresearch support, non-u.s. gov't2000 Novimporte

    Delta sequence of Ty1 transposon can initiate transcription of the distal part of the URA2 gene complex in Saccharomyces cerevisiae.

    No full text
    Expression of a silent aspartate transcarbamylase (ATCase) domain can occur by insertion of a Tyl retrotransposon within the coding sequence of a mutated ura2 allele. This unusual type of Ty-mediated gene activation is possible as the URA2 gene product is a multifunctional protein containing the carbamoyl phosphate synthetase (CPSase), the ATCase and a cryptic dihydroorotase (DHOase) domain. The region in which transcription of the corresponding allele is initiated was determined by RT-PCR experiments. Expression is initiated by a sequence located in the delta element of the Tyl and not by a sequence of the URA2 gene itself. This situation differs with the Ty-mediated gene activation described thus far, in which the transposon substitutes only the 5' regulatory sequences and in which the normal transcription start point is used. The corresponding protein carries both the DHOase-like domain and the ATCase domain, suggesting that the DHOase-like domain is at least involved in the architecture of the protein and necessary to render the ATCase domain functional.journal articleresearch support, non-u.s. gov't1997 Mar 01importe

    Analysis of 21.7 kb DNA sequence from the left arm of chromosome VII reveals 11 open reading frames: two correspond to new genes.

    No full text
    The DNA sequence of a fragment of 21731 bp (nucleotides 87408 to 109138) located on the left arm of chromosome VII from Saccharomyces cerevisiae S288C has been determined using a random cloning strategy followed by an oligonucleotide-directed sequencing. This fragment contains eight complete genes previously sequenced (CLG1, SKI8, VAM7, YPT32, MIG2, SIP2, SPT16 and CHC1), the 5' part of POX1 and two other complete unidentified open reading frames of more than 100 amino acids.journal articleresearch support, non-u.s. gov't1997 Aprimporte
    corecore