4 research outputs found

    Functional Analysis of a Novel Genome-Wide Association Study Signal in <i>SMAD3</i> That Confers Protection From Coronary Artery Disease

    Get PDF
    Objective— A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3 , rs56062135C&gt;T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease–associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. Approach and Results— By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C&gt;T (D′, 0.97; r 2 , 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity ( P &lt;0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent ( P &lt;0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. Conclusions— The coronary artery disease–associated rs17293632C&gt;T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. </jats:sec

    RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice

    No full text
    Obesity is a major public health burden worldwide and is characterized by chronic low-grade inflammation driven by the cooperation of the innate immune system and dysregulated metabolism in adipose tissue and other metabolic organs. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a central regulator of inflammatory cell function that coordinates inflammation, apoptosis and necroptosis in response to inflammatory stimuli. Here we show that genetic polymorphisms near the human RIPK1 locus associate with increased RIPK1 gene expression and obesity. We show that one of these single nucleotide polymorphisms is within a binding site for E4BP4 and increases RIPK1 promoter activity and RIPK1 gene expression in adipose tissue. Therapeutic silencing of RIPK1 in vivo in a mouse model of diet-induced obesity dramatically reduces fat mass, total body weight and improves insulin sensitivity, while simultaneously reducing macrophage and promoting invariant natural killer T cell accumulation in adipose tissue. These findings demonstrate that RIPK1 is genetically associated with obesity, and reducing RIPK1 expression is a potential therapeutic approach to target obesity and related diseases
    corecore