9 research outputs found

    QuEChERS Method Followed by Solid Phase Extraction Method for Gas Chromatographic-Mass Spectrometric Determination of Polycyclic Aromatic Hydrocarbons in Fish

    Get PDF
    A gas chromatography equipped with mass spectrometer (GCMS) method was developed and validated for determination of 16 polycyclic aromatic hydrocarbons (PAHs) in fish using modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method for extraction and solid phase extraction for sample cleanup to remove most of the coextract combined with GCMS for determination of low concentration of selected group of PAHs in homogenized fish samples. PAHs were separated on a GCMS with HP-5ms Ultra Inert GC Column (30 m, 0.25 mm, and 0.25 µm). Mean recovery ranged from 56 to 115%. The extraction efficiency was consistent over the entire range where indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene showed recovery (65, 69%), respectively, at 2 µg/kg. No significant dispersion of results was observed for the other remaining PAHs and recovery did not differ substantially, and at the lowest and the highest concentrations mean recovery and RSD% showed that most of PAHs were between 70% and 120% with RSD less than 10%. The measurement uncertainty is expressed as expanded uncertainty and in terms of relative standard deviation (at 95% confidence level) is ±12%. This method is suitable for laboratories engaged daily in routine analysis of a large number of samples

    Utility of Activated Glassy Carbon and Pencil Graphite Electrodes for Voltammetric Determination of Nalbuphine Hydrochloride in Pharmaceutical and Biological Fluids

    No full text
    This work compares voltammetric response of nalbuphine hydrochloride (NP·HCl) at both activated glassy carbon and pencil graphite electrodes. The electrochemical oxidation of the drug was studied using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square wave voltammetry (SWV) techniques. For analytical purpose a well-resolved irreversible diffusion controlled voltammetric peak was established in Britton-Robinson (B-R) buffer solution of pH 6.00 using pencil graphite electrode (PGE). Using activated glassy carbon electrode (GCE) a well-resolved irreversible diffusion controlled voltammetric peak was obtained at pH 7.00 using the same buffer solution. According to the linear relationship between the peak current and NP·HCl concentration, DPV and SWV methods were developed for their quantitative determination in pharmaceutical and human biological fluids. The linear response was obtained in the range from 1.6×10-5 to 1.5×10-4 mol L−1 using PGE and from 12.5×10-6 to 13.75×10-5 mol L−1 using a GC electrode, respectively. Precision and accuracy of the developed method were checked by recovery studies
    corecore