781 research outputs found

    MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems

    Full text link
    CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ's solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This understanding motivates us to design a MINRES-like algorithm to compute minimum-length solutions to singular symmetric systems. MINRES uses QR factors of the tridiagonal matrix from the Lanczos process (where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned systems (singular or not), MINRES-QLP can give more accurate solutions than MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better estimates of the solution and residual norms, the matrix norm, and the condition number.Comment: 26 pages, 6 figure

    Electrical determination of the valence-band discontinuity in HgTe-CdTe heterojunctions

    Get PDF
    Current-voltage behavior is studied experimentally in a Hg0.78Cd0.22Te-CdTe-Hg0.78Cd0.22Te heterostructure grown by molecular beam epitaxy. At temperatures above 160 K, energy-band diagrams suggest that the dominant low-bias current is thermionic hole emission across the CdTe barrier layer. This interpretation yields a direct determination of 390±75 meV for the HgTe-CdTe valence-band discontinuity at 300 K. Similar analyses of current-voltage data taken at 190–300 K suggest that the valence-band offset decreases at low temperatures in this heterojunction

    Adaptive V2V routing with RSUs and gateway support to enhance network performance in VANET

    Get PDF
    In a VANET communication, link stability can neither be guaranteed nor make the established route link permanent due to the dynamic nature of the network. In V2V communication without the involvement of any infrastructural units like RSU access points or gateway, the probability of successful link establishment decreases when vehicle’s speed varies, red traffic light increases, cross-road increases and finally when the density of the running vehicles is sparse. To ensure route establishment and control route request broadcast in a sparse VANET with crossroad layout, RSUs are used in this paper for route discovery within one gateway zone when a next hop vehicle to relay the route request packet is unavailable. RSUs are static but the vehicles are dynamic in nature, so relying completely on RSU for forwarding data is not recommended because chances of link failure, link re-establishment, and handoff overhead will be high. So, in this paper, RSUs and Gateways are evoked for route discovery and data forwarding only when necessary. Moreover, a local route repair is attempted in this paper when the path length is high to reduce or avoid loss of buffered packets along the route and to maintain a more stable link with the help of RSUs

    Programmable logic circuits for functional integrated smart plastic systems

    Get PDF
    In this paper, we present a functional integrated plastic system. We have fabricated arrays of organic thin-film transistors (OTFTs) and printed electronic components driving an electrophoretic ink display up to 70mm by 70mm on a single flexible transparent plastic foil. Transistor arrays were quickly and reliably configured for different logic functions by an additional process step of inkjet printing conductive silver wires and poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) resistors between transistors or between logic blocks. Among the circuit functions and features demonstrated on the arrays are a 7-stage ring oscillator, a D-type ip-flop memory element, a 2:4 demultiplexer, a programmable array logic device (PAL), and printed wires and resistors. Touch input sensors were also printed, thus only external batteries were required for a complete electronic subsystem. The PAL featured 8 inputs, 8 outputs, 32 product terms, and had 1260 p-type polymer transistors in a 3-metal process using diode-load logic. To the best of our knowledge, this is the first time that a PAL concept with organic transistors has been demonstrated, and also the first time that organic transistors have been used as the control logic for a flexible display which have both been integrated on to a single plastic substrate. The versatility afforded by the additive inkjet printing process is well suited to organic programmable logic on plastic substrates, in effect, making flexible organic electronics more flexibleRCUK, OtherThis is the final published version. It is also available from Elsevier at http://www.sciencedirect.com/science/article/pii/S1566119914003607#
    • …
    corecore