5 research outputs found

    Full-scale validation of bio-recycled asphalt mixtures for road pavements

    Get PDF
    Recycling of asphalt has become a well-established practice in many countries, however the road pavement industry remains a bulk consumer of extracted raw materials. Novel solutions that find root in circular economy concepts and life‐cycle approaches are needed in order to enable optimisation of infrastructure resource efficiency, starting from the design stage and spanning the whole value chain in the construction sector. Itis within this framework that the present study presents a full-scale validation of asphalt mixtures specifically designed to ensure durability of flexible road pavements and at the same time enabling the reuse of reclaimed asphalt pavement (RAP) through the incorporation of bio-materials as recycling agent. These bio-recycled asphalt mixtures have been first designed in laboratory and subsequently validated in a real scale experiment conducted at the accelerated pavement testing facilities at IFSTTAR. Four pavement sections were evaluated: three test sections with innovative bio-materials, and a reference section with a conventional, high modulus asphalt mix (EME2). Two tests were realized: a rutting test and a fatigue test and for each of them the evolution of bio-recycled asphalt mixtures properties as well as the pavement deteriorations were recorded and studied. Evolution of the bio-asphalt mixtures was monitored for a 5 months period after paving by a bespoke nondestructive micro-coring, extracting and recovering methodology developed at the Western Research Institute (WRI). The structural health of the pavement sections was monitored through periodic falling weight deflectometer (FWD) as well as with strain gages and temperature sensors. As a result the three tailored bio-asphalt mixtures performed similarly or better than the control mixture, both in terms of property evolutions and durability

    Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder

    Get PDF
    The recent drive to find ways to increase sustainability and decrease costs in asphalt paving has led researchers to find innovative ways to incorporate more recycled materials and bio-derived binders into mixes with varying success. A new novel bio-derived binder made from refined pine chemistry stabilised with a polymer can increase the sustainability of asphalt mixes while maintaining pavement performance. Laboratory performance testing was conducted on asphalt mixes containing 50% Reclaimed Asphalt Pavement (RAP) by mix weight and the novel bio-derived binder. Results show that the bio-derived binder outperforms the conventional 50/70 pen grade binder mixes with respect to resistance to thermal cracking and adequately passes all requirements for pavements with 20-year design loadings of less than 30 million ESALs. This research shows that asphalt mixes containing 50% RAP and a bio-derived binder can be designed to pass performance criteria at low, intermediate, and high temperatures without the need of neat bitumen

    Effect of two novel bio-based rejuvenators on the performance of 50% RAP mixes–a statistical study on the complex modulus of asphalt binders and asphalt mixtures

    No full text
    An experimental study was conducted to evaluate the effectiveness of two bio-additives as rejuvenators on the properties of asphalt mixtures containing 50% RAP and their binder constituents containing 37% RAP binder. Before mixing, the rejuvenators were blended with fresh bitumen and the extracted and recovered RAP bitumen, and changes in the rheological properties of the binders were assessed using performance grading (PG) criteria. The results showed that both rejuvenators could improve the low-temperature performance of the aged RAP binder and restore its low-temperature properties. Master curves for the unaged, RTFO-aged, and PAV aged blends were constructed using both the Christensen-Anderson-Marasteanu (CAM) model and the Sigmoidal models. A comparative statistical analysis conducted on the models indicated no significant difference between the measured and predicted complex modulus values at any aging conditions. The pairwise statistical comparison between the two models showed that at unaged conditions, they can perfectly overlap as the p-values were greater than the level of significance. However, for the PAV-aged binders, this behaviour appears to weaken due to the brittle behaviour of the binders. Further statistical analyses revealed no significant differences between the two models at unaged conditions, however, as the binders where subjected to aging, significant differences between the two models began to appear. Mixing was performed in two locations: lab and plant, while compaction was performed only in the lab. After mixing and compaction, mixtures were evaluated for their stiffness characteristics through dynamic modulus testing. Compared to the control mixture, rejuvenated mixtures showed lower dynamic modulus values specially at high temperatures. A statistical comparison between the lab-produced, lab-compacted mixtures and plant-produced, lab compacted mixtures showed that both the rejuvenation and the location of mixing were significant factors in the stiffness measurements

    From laboratory mixes evaluation to full scale test: Fatigue behavior of bio-materials recycled asphalt mixtures

    No full text
    The present paper describes the full-scale accelerated test, carried out on asphalt pavements made up with bio-materials, especially designed to help reusing Reclaimed Asphalt (RA) by re-activating the aged binder. Four pavement sections were evaluated: three pavement sections with innovative bio-materials (bio-recycled asphalt mixtures), and a reference section with a conventional, high modulus asphalt mix (EME2). In this study, fatigue resistance was first evaluated in laboratory, with two-points bending test, and then at full scale under heavy traffic loading, with the IFSTTAR accelerated pavement testing facility. The evolution of bio-materials recycled asphalt mixture characteristics, as well as the pavement distresses, were recorded and analyzed. The structural condition of the pavement sections was monitored periodically through falling weight deflectometer (FWD) measurement as well as with strain gauges and temperature sensors. Although the reference EME2 mix presented the highest fatigue resistance in laboratory, on the full scale test, the three bio-based asphalt mixtures performed similarly or better than the control EME2 mixture

    From Laboratory Mixes to Full Scale Test: Rutting Evaluation of Bio-recycled Asphalt Mixes

    No full text
    The present paper describes the rutting behavior of innovative mixes incorporating 50% of Reclaimed Asphalt (RA) with bio-materials. They were assessed in the laboratory and in a full-scale accelerated experiment. The innovative mixes studied here contained bio-materials especially designed to help recycling by re-activating the aged binder from RA. Four mixes were evaluated: three of them are manufactured with bio-materials, (two bio-rejuvenators and one bio-binder) and one was a control mix, which was a high modulus asphalt mix (EME2). In this study, the rutting resistance of the four mixes was first evaluated in the laboratory with both European and US methods. The full-scale test was then performed in order to evaluate the rutting resistance of the bio-recycled asphalt mixes under heavy traffic (200,000 load cycles loaded at 65 kN) and compared with the control one. A simplified analysis leads to the conclusion that, with the Nantes climate, a daily traffic of 150 heavy vehicles per day applied over 20 years corresponds to approximately 200,000 heavy vehicle loads when the surface temperature exceeds 30 °C. Therefore, it can be considered that the rutting evaluation made on the carrousel represented almost 20 years of traffic during hot-day periods. The results obtained on the test track were consistent with the laboratory rutting tests showing good performance for all the mixes. The materials presenting the best performance on the test track also presented the best performance in the laboratory
    corecore