17 research outputs found

    Spinocerebellar ataxia type 6 family with phenotypic overlap with Multiple System Atrophy

    Get PDF
    Aim of the study. Multiple system atrophy (MSA) and spinocerebellar ataxia (SCA) share similar symptomatology. We describe a rare occurrence of familial MSA that proved to be SCA6 upon genetic analysis.Materials and methods. Eighty MSA patients were enrolled in our study; blood samples were collected and genetic screening of the familial case for known SCA loci was performed.Results. A 68-year-old woman presented with recurrent and severe episodes of light-headedness, imbalance, frequent falls, neck and lower back stiffness, subjective arm and leg weakness, and numbness and tingling in both feet. One year later, her condition had declined; she experienced more falls, worsening instability, again more generalised but still subjective weakness, impaired fine motor movements, slurred speech, difficulty swallowing, episodes of choking, bladder incontinence, and constipation. Clinical suspicion included parkinsonism, MSA, and SCA. The patient was enrolled in our MSA study and was found to have 22 and 12 CAG repeats in CACNA1A. The other 79 clinical MSA patients were negative for SCA6 screening.Conclusions and clinical implications. While MSA and SCA may have similar presentations during early disease stages, the presence of both conditions on the list of differential diagnoses can be a diagnostic dilemma. Further analysis will aid in developing a biomarker to distinguish between the two conditions and guide proper management

    Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease

    No full text
    Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk

    Frequency of mutations in PRKN, PINK1, and DJ1 in Patients With Early-Onset Parkinson Disease from neighboring countries in Central Europe

    No full text
    INTRODUCTION: Approximately 10% of patients with Parkinson disease (PD) present with early-onset disease (EOPD), defined as diagnosis before 50 years of age. Genetic factors are known to contribute to EOPD, with most commonly observed mutations in PRKN, PINK1, and DJ1 genes. The aim of our study was to analyze the frequency of PRKN, PINK1, and DJ1 mutations in an EOPD series from 4 neighboring European countries: Czech Republic, Germany, Poland, and Ukraine. METHODS: Diagnosis of PD was made based on UK Brain Bank diagnostic criteria in departments experienced in movement disorders (1 from Czech Republic, 1 from Germany, 9 from Poland, and 3 from Ukraine). EOPD was defined as onset at or before 50 years of age. Of the 541 patients recruited to the study, 11 were Czech, 38 German, 476 Polish, and 16 Ukrainian. All cohorts were fully screened with Sanger sequencing for PRKN, PINK1, and DJ1 and multiplex ligation-dependent probe amplification for exon dosage. RESULTS: PRKN homozygous or double heterozygous mutations were identified in 17 patients: 1 Czech (9.1%), 1 German (2.6%), 14 Polish (2.9%), and 1 Ukrainian (6.3%). PINK1 homozygous mutations were only identified in 3 Polish patients (0.6%). There were no homozygous or compound heterozygous DJ1 mutations in analyzed subpopulations. One novel variant in PRKN was identified in the Ukrainian series. CONCLUSION: In the analyzed cohorts, mutations in the genes PRKN, PINK1, and DJ1 are not frequently observed

    Mitochondrial genomic variation in dementia with Lewy bodies: association with disease risk and neuropathological measures

    No full text
    Abstract Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted

    Cathepsin B p.Gly284Val variant in Parkinsons disease pathogenesis

    No full text
    Parkinson’s disease (PD) is generally considered a sporadic disorder, but a strong genetic background is often found. The aim of this study was to identify the underlying genetic cause of PD in two affected siblings and to subsequently assess the role of mutations in Cathepsin B (CTSB) in susceptibility to PD. A typical PD family was identified and whole-exome sequencing was performed in two affected siblings. Variants of interest were validated using Sanger sequencing. CTSB p.Gly284Val was genotyped in 2077 PD patients and 615 unrelated healthy controls from the Czech Republic, Ireland, Poland, Ukraine, and the USA. The gene burden analysis was conducted for the CTSB gene in an additional 769 PD probands from Mayo Clinic Florida familial PD cohort. CTSB expression and activity in patient-derived fibroblasts and controls were evaluated by qRT-PCR, western blot, immunocytochemistry, and enzymatic assay. The CTSB p.Gly284Val candidate variant was only identified in affected family members. Functional analysis of CTSB patient-derived fibroblasts under basal conditions did not reveal overt changes in endogenous expression, subcellular localization, or enzymatic activity in the heterozygous carrier of the CTSB variant. The identification of the CTSB p.Gly284Val may support the hypothesis that the CTSB locus harbors variants with differing penetrance that can determine the disease risk

    Association of Essential Tremor With Novel Risk Loci: A Genome-Wide Association Study and Meta-analysis

    No full text
    Importance: Essential tremor (ET) is one of the most common movement disorders, affecting 5% of the general population older than 65 years. Common variants are thought to contribute toward susceptibility to ET, but no variants have been robustly identified. Objective: To identify common genetic factors associated with risk of ET. Design, setting, and participants: Case-control genome-wide association study. Inverse-variance meta-analysis was used to combine cohorts. Multicenter samples collected from European populations were collected from January 2010 to September 2019 as part of an ongoing study. Included patients were clinically diagnosed with or reported having ET. Control individuals were not diagnosed with or reported to have ET. Of 485 250 individuals, data for 483 054 passed data quality control and were used. Main outcomes and measures: Genotypes of common variants associated with risk of ET. Results: Of the 483 054 individuals included, there were 7177 with ET (3693 [51.46%] female; mean [SD] age, 62.66 [15.12] years), and 475 877 control individuals (253 785 [53.33%] female; mean [SD] age, 56.40 [17.6] years). Five independent genome-wide significant loci and were identified and were associated with approximately 18% of ET heritability. Functional analyses found significant enrichment in the cerebellar hemisphere, cerebellum, and axonogenesis pathways. Genetic correlation (r), which measures the degree of genetic overlap, revealed significant common variant overlap with Parkinson disease (r, 0.28; P = 2.38 × 10-8) and depression (r, 0.12; P = 9.78 × 10-4). A separate fine-mapping of transcriptome-wide association hits identified genes such as BACE2, LRRN2, DHRS13, and LINC00323 in disease-relevant brain regions, such as the cerebellum. Conclusions and relevance: The results of this genome-wide association study suggest that a portion of ET heritability can be explained by common genetic variation and can help identify new common genetic risk factors for ET
    corecore