220 research outputs found
Dietary fiber in oat hulls, flakes, and bran
Non-Peer Reviewe
Effect of moisture, temperature, and nitrogen on yield and protein quality of Thatcher wheat
Includes bibliographical references (page 588).Soil moisture level was the most important factor controlling plant and grain yields while nitrogen fertilizer had the greatest influence on protein content and sedimentation value. Lower temperatures and nitrogen fertilization favored plant development at medium and high soil moisture levels but did not significantly alter the yield of plants subjected to periodic moisture stress. Temperature was the only treatment to have a consistent effect on kernel weight. However, seed yields were more closely associated with total plant weight and number of culms than kernel size.The sedimentation values of the flour, which ranged from 33.8 to 70.7 ml, were highly correlated with protein content. The wide range of sedimentation values approached the maximum range reported for very weak and very strong wheats. Within treatments receiving the same nitrogen applications, the sedimentation values and protein content were inversely related to grain yield.Variations in glutamic acid and proline content of the hydrolyzed flour proteins were positively associated with protein content and sedimentation value. Amino acids which were negatively correlated with protein content included alanine, arginine, aspartic acid, cystine, glycine, and lysine. Contrary to previous reports the lysine content varied over the complete range of protein content in the flours. The significance of these variations in amino acid composition are discussed in relation to recent studies on the fractionation of flour proteins
Influence of soil moisture, nitrogen fertilization, and temperature on quality and amino acid composition of Thatcher wheat, The
Includes bibliographical references (pages 227-228).The protein content of Thatcher wheat grown in the growth chamber was increased by reduced water supply, nitrogen fertilization, and higher air temperatures. Soil moisture conditions had a greater influence on protein content at higher temperatures, while the largest responses to nitrogen fertilization were obtained at the medium moisture level. Changes in sedimentation value and mixing time were associated with protein content except for plants grown at 62°F. Apparently the low temperature had an adverse effect on gluten quality. The relative distribution of 9 amino acids was significantly correlated with changes in grain protein content. Only 6 amino acids gave similar high correlations with flour protein content and sedimentation value. These differences are explained on the basis of changes in the morphology of the wheat grain and the proportion of flour proteins
A Defined Network of Fast-Spiking Interneurons in Orbitofrontal Cortex: Responses to Behavioral Contingencies and Ketamine Administration
Orbitofrontal cortex (OFC) is a region of prefrontal cortex implicated in the motivational control of behavior and in related abnormalities seen in psychosis and depression. It has been hypothesized that a critical mechanism in these disorders is the dysfunction of GABAergic interneurons that normally regulate prefrontal information processing. Here, we studied a subclass of interneurons isolated in rat OFC using extracellular waveform and spike train analysis. During performance of a goal-directed behavioral task, the firing of this class of putative fast-spiking (FS) interneurons showed robust temporal correlations indicative of a functionally coherent network. FS cell activity also co-varied with behavioral response latency, a key indicator of motivational state. Systemic administration of ketamine, a drug that can mimic psychosis, preferentially inhibited this cell class. Together, these results support the idea that OFC–FS interneurons form a critical link in the regulation of motivation by prefrontal circuits during normal and abnormal brain and behavioral states
Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach
Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique
Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean
The aim of this work was to compare functional properties including solubility, emulsifying and foaming properties of native and thermally treated adzuki, soy and pea protein isolates prepared under the same conditions. These functional properties were tested at four pH values: pH 3.0, pH 5.0, pH 7.0 and pH 8.0. The lowest solubility at all pH values were obtained for isolate of adzuki whereas isolates of soybean had the highest values at almost all pHs. Thermal treatment reduced solubility of soy and pea isolates at all pH values, whereas solubility of adzuki isolate was unchanged, except at pH 8. Native isolate of adzuki had the best emulsifying properties at pH 7.0 whereas at the other pH values some of native pea and soybean protein isolates were superior. After thermal treatment, depending on tested pH and selected variety all of three species could be a good emulsifier. Native soy protein isolates formed the most stable foams at all pHs. Thermal treatment significantly improved foaming properties of adzuki isolate, whereas reduced foaming capacity of soy and pea isolates, but could improve foam stability of these isolates at specific pH. Appropriate selection of legume seed as well as variety could have great importance in achievement of desirable functional properties of final products. All three tested species could find specific application in wide range of food products
Parallel Odor Processing by Two Anatomically Distinct Olfactory Bulb Target Structures
The olfactory cortex encompasses several anatomically distinct regions each hypothesized to provide differential representation and processing of specific odors. Studies exploring whether or not the diversity of olfactory bulb input to olfactory cortices has functional meaning, however, are lacking. Here we tested whether two anatomically major olfactory cortical structures, the olfactory tubercle (OT) and piriform cortex (PCX), differ in their neural representation and processing dynamics of a small set of diverse odors by performing in vivo extracellular recordings from the OT and PCX of anesthetized mice. We found a wealth of similarities between structures, including odor-evoked response magnitudes, breadth of odor tuning, and odor-evoked firing latencies. In contrast, only few differences between structures were found, including spontaneous activity rates and odor signal-to-noise ratios. These results suggest that despite major anatomical differences in innervation by olfactory bulb mitral/tufted cells, the basic features of odor representation and processing, at least within this limited odor set, are similar within the OT and PCX. We predict that the olfactory code follows a distributed processing stream in transmitting behaviorally and perceptually-relevant information from low-level stations
- …