4 research outputs found

    European Perspectives

    No full text

    Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes

    Get PDF
    Aims The EMPA‐REG OUTCOME study showed reduced mortality and hospitalization due to heart failure (HF) in diabetic patients treated with empagliflozin. Overexpression and Ca2+‐dependent activation of Ca2+/calmodulin‐dependent kinase II (CaMKII) are hallmarks of HF, leading to contractile dysfunction and arrhythmias. We tested whether empagliflozin reduces CaMKII‐ activity and improves Ca2+‐handling in human and murine ventricular myocytes. Methods and results Myocytes from wild‐type mice, mice with transverse aortic constriction (TAC) as a model of HF, and human failing ventricular myocytes were exposed to empagliflozin (1 ÎŒmol/L) or vehicle. CaMKII activity was assessed by CaMKII–histone deacetylase pulldown assay. Ca2+ spark frequency (CaSpF) as a measure of sarcoplasmic reticulum (SR) Ca2+ leak was investigated by confocal microscopy. [Na+]i was measured using Na+/Ca2+‐exchanger (NCX) currents (whole‐cell patch clamp). Compared with vehicle, 24 h empagliflozin exposure of murine myocytes reduced CaMKII activity (1.6 ± 0.7 vs. 4.2 ± 0.9, P < 0.05, n = 10 mice), and also CaMKII‐dependent ryanodine receptor phosphorylation (0.8 ± 0.1 vs. 1.0 ± 0.1, P < 0.05, n = 11 mice), with similar results upon TAC. In murine myocytes, empagliflozin reduced CaSpF (TAC: 1.7 ± 0.3 vs. 2.5 ± 0.4 1/100 ÎŒm−1 s−1, P < 0.05, n = 4 mice) but increased SR Ca2+ load and Ca2+ transient amplitude. Importantly, empagliflozin also significantly reduced CaSpF in human failing ventricular myocytes (1 ± 0.2 vs. 3.3 ± 0.9, P < 0.05, n = 4 patients), while Ca2+ transient amplitude was increased (F/F0: 0.53 ± 0.05 vs. 0.36 ± 0.02, P < 0.05, n = 3 patients). In contrast, 30 min exposure with empagliflozin did not affect CaMKII activity nor Ca2+‐handling but significantly reduced [Na+]i. Conclusions We show for the first time that empagliflozin reduces CaMKII activity and CaMKII‐dependent SR Ca2+ leak. Reduced Ca2+ leak and improved Ca2+ transients may contribute to the beneficial effects of empagliflozin in HF

    Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy

    No full text
    corecore